Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2001_70_3_a8, author = {Yu. V. Muranov and D. Repov\v{s}}, title = {The {Groups} $LS$ and {Morphisms} of {Quadratic} {Extensions}}, journal = {Matemati\v{c}eskie zametki}, pages = {419--424}, publisher = {mathdoc}, volume = {70}, number = {3}, year = {2001}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2001_70_3_a8/} }
Yu. V. Muranov; D. Repovš. The Groups $LS$ and Morphisms of Quadratic Extensions. Matematičeskie zametki, Tome 70 (2001) no. 3, pp. 419-424. http://geodesic.mathdoc.fr/item/MZM_2001_70_3_a8/
[1] Wall C. T. C., Surgery on Compact Manifolds, ed. A. A. Ranicki, Amer. Math. Soc., Providence (R.I.), 1999 | Zbl
[2] Ranicki A. A., Exact Sequences in the Algebraic Theory of Surgery, Matem. Notes, 26, Princeton, 1981 | Zbl
[3] Cappell S. E., Shaneson J. L., “Pseudo-free actions”, Lecture Notes in Math., 763, 1979, 395–447 | MR | Zbl
[4] Hambleton I., “Projective surgery obstructions on closed manifolds”, Lecture Notes in Math., 967, 1982, 101–131 | MR | Zbl
[5] Akhmetev P. M., “Rasschepleniya gomotopicheskikh ekvivalentnostei vdol odnostoronnego podmnogoobraziya korazmernosti $1$”, Izv. AN SSSR. Ser. matem., 51 (1987), 211–241 | Zbl
[6] Kharshiladze A. F., “Oboschennyi invariant Braudera–Livsi”, Izv. AN SSSR. Ser. matem., 51 (1987), 379–401 | Zbl
[7] Akhmetev P. M., Muranov Yu. V., “Prepyatstviya k rasschepleniyu mnogoobrazii s beskonechnoi fundamentalnoi gruppoi”, Matem. zametki, 60:2 (1996), 163–175 | MR | Zbl
[8] Ranicki A., “The $L$-theory of twisted quadratic extensions”, Canad. J. Math., 39 (1987), 345–364 | MR | Zbl
[9] Muranov Yu. V., “Gruppy prepyatstvii k rasschepleniyu i kvadratichnye rasshireniya antistruktur”, Izv. RAN. Ser. matem., 59:6 (1995), 107–132 | MR | Zbl
[10] Muranov Yu. V., Repovsh D., “Gruppy prepyatstvii k perestroikam i rasschepleniyam dlya pary mnogoobrazii”, Matem. sb., 188:3 (1997), 127–142 | MR | Zbl
[11] Hambleton I., Taylor L. R., Williams B., “An introduction to maps between surgery obstruction groups”, Lecture Notes in Math., 1051, 1984, 49–127 | MR | Zbl
[12] Muranov Yu. V., Kharshiladze A. F., “Gruppy Braudera–Livsi abelevykh $2$-grupp”, Matem. sb., 181 (1990), 1061–1098 | Zbl
[13] Muranov Yu. V., “Otnositelnye gruppy Uolla i dekoratsii”, Matem. sb., 185:12 (1994), 79–100 | MR | Zbl
[14] Muranov Yu. V., “Zadacha rasschepleniya”, Tr. MIAN, 212, Nauka, M., 1996, 123–146 | MR
[15] Muranov Yu. V., Khemblton I., “Proektivnye gruppy prepyatstvii k rasschepleniyu vdol odnostoronnikh podmnogoobrazii”, Matem. sb., 190 (1999), 65–86 | MR | Zbl
[16] Cappell S. E., “A splitting theorem for manifolds”, Invent. Math., 33 (1976), 69–170 | DOI | MR | Zbl
[17] Wall C. T. C., “On the classification of Hermitian forms. VI: Group rings”, Ann. Math., 103 (1976), 1–80 | DOI | MR | Zbl
[18] Hambleton I., Madsen I., “On the computation of the projective surgery obstruction groups”, $K$-theory, 7 (1993), 537–574 | DOI | MR | Zbl
[19] Wall C. T. C., “On the axiomatic foundations of the theory of Hermitian forms”, Proc. Cambridge Philos. Soc., 67 (1970), 243–250 | DOI | MR | Zbl
[20] Wall C. T. C., “Foundations of algebraic $L$-theory”, Lecture Notes in Math., 343, 1973, 266–300 | MR | Zbl
[21] Hambleton I., Ranicki A., Taylor L., “Round $L$-theory”, J. Pure and Appl. Algebra, 47 (1987), 131–154 | DOI | MR | Zbl