Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2001_70_3_a14, author = {W. V. Zudilin}, title = {One of the {Eight} {Numbers} $\zeta(5),\zeta(7),\dots,\zeta(17),\zeta(19)$ {Is} {Irrational}}, journal = {Matemati\v{c}eskie zametki}, pages = {472--476}, publisher = {mathdoc}, volume = {70}, number = {3}, year = {2001}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2001_70_3_a14/} }
W. V. Zudilin. One of the Eight Numbers $\zeta(5),\zeta(7),\dots,\zeta(17),\zeta(19)$ Is Irrational. Matematičeskie zametki, Tome 70 (2001) no. 3, pp. 472-476. http://geodesic.mathdoc.fr/item/MZM_2001_70_3_a14/
[1] Apéry R., Astérisque, 61, 1979, 11–13 | Zbl
[2] Rivoal T., C. R. Acad. Sci. Paris Sér. I Math., 331:4 (2000), 267–270 | MR | Zbl
[3] Rivoal T., “Irrationalité d'au moins un des neuf nombres $\zeta(5),\zeta(7),\dots,\zeta(21)$”, Acta Arith., 103:2 (2002), 157–167 ; E-print math.NT/0104221 | DOI
[4] Zudilin V. V., “Ob irratsionalnosti znachenii dzeta-funktsii Rimana”, Izv. RAN. Ser. matem., 66:3 (2002), 49–102 | MR | Zbl
[5] Zudilin V. V., UMN, 56:2 (2001), 215–216 | MR | Zbl
[6] Zudilin V. V., “Ob irratsionalnosti znachenii dzeta-funktsii”, Materialy XXIII konferentsii molodykh uchenykh (MGU, 9–14 aprelya 2001 g.), MGU, M., 2001; E-print math.NT/0104249
[7] Matveev E. M., Matem. zametki, 54:4 (1993), 76–81 | MR | Zbl