The Correction Theorem for Anisotropic Spaces
Matematičeskie zametki, Tome 70 (2001) no. 3, pp. 323-333

Voir la notice de l'article provenant de la source Math-Net.Ru

The following old problem is solved. Given an $\varepsilon>0$, a function $f \colon [0,1]^n\to\mathbb R$, and the partial moduli of continuity of this function evaluated in a symmetric space $X$, find a set $I(\varepsilon)$ of measure larger than $1-\varepsilon$ such that the partial uniform moduli of continuity of f determined for the points of this set admit an unimprovable (with respect to all restrictions to sets of measure larger than $1-\varepsilon$) estimate of partial uniform moduli of continuity and write out this estimate of the uniform partial moduli of continuity.
@article{MZM_2001_70_3_a0,
     author = {E. I. Berezhnoi},
     title = {The {Correction} {Theorem} for {Anisotropic} {Spaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {323--333},
     publisher = {mathdoc},
     volume = {70},
     number = {3},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_70_3_a0/}
}
TY  - JOUR
AU  - E. I. Berezhnoi
TI  - The Correction Theorem for Anisotropic Spaces
JO  - Matematičeskie zametki
PY  - 2001
SP  - 323
EP  - 333
VL  - 70
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_70_3_a0/
LA  - ru
ID  - MZM_2001_70_3_a0
ER  - 
%0 Journal Article
%A E. I. Berezhnoi
%T The Correction Theorem for Anisotropic Spaces
%J Matematičeskie zametki
%D 2001
%P 323-333
%V 70
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_70_3_a0/
%G ru
%F MZM_2001_70_3_a0
E. I. Berezhnoi. The Correction Theorem for Anisotropic Spaces. Matematičeskie zametki, Tome 70 (2001) no. 3, pp. 323-333. http://geodesic.mathdoc.fr/item/MZM_2001_70_3_a0/