Invertibility of an Operator Appearing in the Control Theory for Linear Systems
Matematičeskie zametki, Tome 70 (2001) no. 2, pp. 230-236
Voir la notice de l'article provenant de la source Math-Net.Ru
We give sufficient conditions for the existence of a bounded inverse operator for a linear operator appearing in the theory of optimal control of linear systems in Hilbert space and having a matrix representation of the form
$$
\begin {pmatrix}
F_10
\\F_3-F_1^*
\\-F_5^*^*-F_4
\end{pmatrix} ,
$$
, where $F3$, $F4$ are nonnegative self-adjoint operators. The invertibility of the operator under study is used to prove the unique solvability of a certain two-point boundary-value problem that arises from conditions for optimal control.
@article{MZM_2001_70_2_a6,
author = {G. A. Kurina},
title = {Invertibility of an {Operator} {Appearing} in the {Control} {Theory} for {Linear} {Systems}},
journal = {Matemati\v{c}eskie zametki},
pages = {230--236},
publisher = {mathdoc},
volume = {70},
number = {2},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2001_70_2_a6/}
}
G. A. Kurina. Invertibility of an Operator Appearing in the Control Theory for Linear Systems. Matematičeskie zametki, Tome 70 (2001) no. 2, pp. 230-236. http://geodesic.mathdoc.fr/item/MZM_2001_70_2_a6/