Invertibility of an Operator Appearing in the Control Theory for Linear Systems
Matematičeskie zametki, Tome 70 (2001) no. 2, pp. 230-236.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give sufficient conditions for the existence of a bounded inverse operator for a linear operator appearing in the theory of optimal control of linear systems in Hilbert space and having a matrix representation of the form $$ \begin {pmatrix} F_10 \\F_3-F_1^* \\-F_5^*^*-F_4 \end{pmatrix} , $$ , where $F3$, $F4$ are nonnegative self-adjoint operators. The invertibility of the operator under study is used to prove the unique solvability of a certain two-point boundary-value problem that arises from conditions for optimal control.
@article{MZM_2001_70_2_a6,
     author = {G. A. Kurina},
     title = {Invertibility of an {Operator} {Appearing} in the {Control} {Theory} for {Linear} {Systems}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {230--236},
     publisher = {mathdoc},
     volume = {70},
     number = {2},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_70_2_a6/}
}
TY  - JOUR
AU  - G. A. Kurina
TI  - Invertibility of an Operator Appearing in the Control Theory for Linear Systems
JO  - Matematičeskie zametki
PY  - 2001
SP  - 230
EP  - 236
VL  - 70
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_70_2_a6/
LA  - ru
ID  - MZM_2001_70_2_a6
ER  - 
%0 Journal Article
%A G. A. Kurina
%T Invertibility of an Operator Appearing in the Control Theory for Linear Systems
%J Matematičeskie zametki
%D 2001
%P 230-236
%V 70
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_70_2_a6/
%G ru
%F MZM_2001_70_2_a6
G. A. Kurina. Invertibility of an Operator Appearing in the Control Theory for Linear Systems. Matematičeskie zametki, Tome 70 (2001) no. 2, pp. 230-236. http://geodesic.mathdoc.fr/item/MZM_2001_70_2_a6/

[1] Khalmosh P., Gilbertovo prostranstvo v zadachakh, Mir, M., 1970 | Zbl

[2] Lewis F. L., “A survey of linear singular systems”, Circuits, Systems, and Signal Processing, 5:1 (1986), 3–36 | DOI | MR | Zbl

[3] Kurina G. A., “Singulyarnye vozmuscheniya zadach upravleniya s uravneniem sostoyaniya, ne razreshennym otnositelno proizvodnoi”, Obzor, Izv. RAN. Ser. tekhn. kibern., 1992, no. 4, 20–48 | MR | Zbl

[4] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | Zbl

[5] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1984 | Zbl

[6] Kurina G. A., “Ob obratimosti odnogo operatora, voznikayuschego v teorii zadach upravleniya dlya deskriptornykh sistem”, Pontryaginskie chteniya – Kh, Tezisy dokl., VGU, Voronezh, 1999, 145