Topological Equivalence of Local Singularities of Particular Type for Dynamical Systems with Shock Interactions
Matematičeskie zametki, Tome 70 (2001) no. 2, pp. 181-194.

Voir la notice de l'article provenant de la source Math-Net.Ru

A theorem on topological equivalence is proved for local singularities of particular type for dynamical systems with shock interactions. The proof is based on a previously established result concerning the description of motion in the neighborhood of the specified local singularity in terms of smooth differential equations.
@article{MZM_2001_70_2_a2,
     author = {S. P. Gorbikov},
     title = {Topological {Equivalence} of {Local} {Singularities} of {Particular} {Type} for {Dynamical} {Systems} with {Shock} {Interactions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {181--194},
     publisher = {mathdoc},
     volume = {70},
     number = {2},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_70_2_a2/}
}
TY  - JOUR
AU  - S. P. Gorbikov
TI  - Topological Equivalence of Local Singularities of Particular Type for Dynamical Systems with Shock Interactions
JO  - Matematičeskie zametki
PY  - 2001
SP  - 181
EP  - 194
VL  - 70
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_70_2_a2/
LA  - ru
ID  - MZM_2001_70_2_a2
ER  - 
%0 Journal Article
%A S. P. Gorbikov
%T Topological Equivalence of Local Singularities of Particular Type for Dynamical Systems with Shock Interactions
%J Matematičeskie zametki
%D 2001
%P 181-194
%V 70
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_70_2_a2/
%G ru
%F MZM_2001_70_2_a2
S. P. Gorbikov. Topological Equivalence of Local Singularities of Particular Type for Dynamical Systems with Shock Interactions. Matematičeskie zametki, Tome 70 (2001) no. 2, pp. 181-194. http://geodesic.mathdoc.fr/item/MZM_2001_70_2_a2/

[1] Andronov A. A., Vitt A. A., Khaikin S. E., Teoriya kolebanii, Fizmatgiz, M., 1959

[2] Nemytskii V. V., Stepanov V. V., Kachestvennaya teoriya differentsialnykh uravnenii, 2-e izd., GITTL, M.–L., 1949

[3] Andronov A. A., Leontovich E. A., Gordon I. I., Maier A. G., Kachestvennaya teoriya dinamicheskikh sistem vtorogo poryadka, Nauka, M., 1966 | Zbl

[4] Filippov A. F., Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1985

[5] Denisov G. G., Neimark Yu. I., Sandalov V. M., Tsvetkov Yu. V., “Ob obkate rotora po zhestkomu podshipniku”, Izv. AN SSSR. Mekh. tverdogo tela, 1973, no. 4, 7–13

[6] Fedosenko Yu. S., “O strukture fazovogo prostranstva i periodicheskikh dvizheniyakh neavtonomnykh dinamicheskikh sistem s udarnymi vzaimodeistviyami”, PMM, 40:4 (1976), 618–629 | MR | Zbl

[7] Gorbikov S. P., “Osobennosti stroeniya fazovogo prostranstva dinamicheskikh sistem s udarnymi vzaimodeistviyami”, Izv. AN SSSR. Mekh. tverdogo tela, 1987, no. 3, 23–26

[8] Gorbikov S. P., “Lokalnye osobennosti dinamicheskikh sistem s udarnymi vzaimodeistviyami”, Matem. zametki, 64:4 (1998), 531–542 | MR | Zbl

[9] Gorbikov S. P., “Differentsialnye uravneniya, opredelyaemye dinamicheskimi sistemami s udarnymi vzaimodeistviyami na giperpoverkhnosti udara”, Vestn. Nizhegorodskogo gos. un-ta. Matem. modelirovanie i optimalnoe upravlenie, no. 1 (18), Izd-vo Nizhegorodskogo un-ta, N. Novgorod, 1998, 43–52

[10] Gorbikov S. P., Struktura fazovogo prostranstva dinamicheskikh sistem s udarnymi vzaimodeistviyami, Dep. v VINITI SSSR 23.05.85 No. 3559, Gork. gos. un-t, Gorkii, 1985, 15 pp.

[11] Neimark Yu. I., Metod tochechnykh otobrazhenii v teorii nelineinykh kolebanii, M., 1972 | Zbl

[12] Feigin M. I., “Skolzyaschii rezhim v dinamicheskikh sistemakh s udarnymi vzaimodeistviyami”, PMM, 31:3 (1967), 533–536

[13] Nagaev R. F., Mekhanicheskie protsessy s povtornymi zatukhayuschimi soudareniyami, Nauka, M., 1985

[14] Mischenko A. S., Fomenko A. T., Kurs differentsialnoi geometrii i topologii, Izd-vo Moskovskogo un-ta, M., 1980 | Zbl