Bezout Rings, Polynomials, and Distributivity
Matematičeskie zametki, Tome 70 (2001) no. 2, pp. 270-288
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $A$ be a ring, $\varphi$ be an injective endomorphism of $A$, and let $A_r[x,\varphi]\equiv R$ be the right skew polynomial ring. If all right annihilator ideals of $A$ are ideals, then $R$ is a right Bezout ring $\iff$ $A$ is a right Rickartian right Bezout ring, $\varphi(e)=e$ for every central idempotent $e\in A$, and the element $\varphi(a)$ is invertible in $A$ for every regular $a\in A$. If $A$ is strongly regular and $n\ge2$, then $R/x^nR$ is a right Bezout ring $R/x^nR$ is a right distributive ring $\iff$ $R/x^nR$ is a right invariant ring $\iff$ $\varphi(e)=e$ for every central idempotent $e\in A$. The ring $R/x^2R$ is right distributive $\iff$ $R/x^nR$ is right distributive for every positive integer $n$ $\iff$ $A$ is right or left Rickartian and right distributive,$\varphi(e)=e$ for every central idempotent $e\in A$ and the $\varphi(a)$ is invertible in $A$ for every regular $a\in A$. If $A$ is a ring which is a finitely generated module over its center, then $A[x]$ is a right Bezout ring $\iff$ $A[x]/x^2A[x]$ is a right Bezout ring $\iff$ $A$ is a regular ring.
@article{MZM_2001_70_2_a10,
author = {A. A. Tuganbaev},
title = {Bezout {Rings,} {Polynomials,} and {Distributivity}},
journal = {Matemati\v{c}eskie zametki},
pages = {270--288},
publisher = {mathdoc},
volume = {70},
number = {2},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2001_70_2_a10/}
}
A. A. Tuganbaev. Bezout Rings, Polynomials, and Distributivity. Matematičeskie zametki, Tome 70 (2001) no. 2, pp. 270-288. http://geodesic.mathdoc.fr/item/MZM_2001_70_2_a10/