Bezout Rings, Polynomials, and Distributivity
Matematičeskie zametki, Tome 70 (2001) no. 2, pp. 270-288.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A$ be a ring, $\varphi$ be an injective endomorphism of $A$, and let $A_r[x,\varphi]\equiv R$ be the right skew polynomial ring. If all right annihilator ideals of $A$ are ideals, then $R$ is a right Bezout ring $\iff$ $A$ is a right Rickartian right Bezout ring, $\varphi(e)=e$ for every central idempotent $e\in A$, and the element $\varphi(a)$ is invertible in $A$ for every regular $a\in A$. If $A$ is strongly regular and $n\ge2$, then $R/x^nR$ is a right Bezout ring $R/x^nR$ is a right distributive ring $\iff$ $R/x^nR$ is a right invariant ring $\iff$ $\varphi(e)=e$ for every central idempotent $e\in A$. The ring $R/x^2R$ is right distributive $\iff$ $R/x^nR$ is right distributive for every positive integer $n$ $\iff$ $A$ is right or left Rickartian and right distributive,$\varphi(e)=e$ for every central idempotent $e\in A$ and the $\varphi(a)$ is invertible in $A$ for every regular $a\in A$. If $A$ is a ring which is a finitely generated module over its center, then $A[x]$ is a right Bezout ring $\iff$ $A[x]/x^2A[x]$ is a right Bezout ring $\iff$ $A$ is a regular ring.
@article{MZM_2001_70_2_a10,
     author = {A. A. Tuganbaev},
     title = {Bezout {Rings,} {Polynomials,} and {Distributivity}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {270--288},
     publisher = {mathdoc},
     volume = {70},
     number = {2},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_70_2_a10/}
}
TY  - JOUR
AU  - A. A. Tuganbaev
TI  - Bezout Rings, Polynomials, and Distributivity
JO  - Matematičeskie zametki
PY  - 2001
SP  - 270
EP  - 288
VL  - 70
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_70_2_a10/
LA  - ru
ID  - MZM_2001_70_2_a10
ER  - 
%0 Journal Article
%A A. A. Tuganbaev
%T Bezout Rings, Polynomials, and Distributivity
%J Matematičeskie zametki
%D 2001
%P 270-288
%V 70
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_70_2_a10/
%G ru
%F MZM_2001_70_2_a10
A. A. Tuganbaev. Bezout Rings, Polynomials, and Distributivity. Matematičeskie zametki, Tome 70 (2001) no. 2, pp. 270-288. http://geodesic.mathdoc.fr/item/MZM_2001_70_2_a10/

[1] Tuganbaev A. A., Semidistributive Modules and Rings, Kluwer Acad. Publ., Dordrecht–Boston–London, 1998 | Zbl

[2] Hirano Y., Hong C.-Y., Kim J.-Y., Park J. K., “On strongly bounded rings and duo rings”, Comm. Algebra, 23:6 (1995), 2199–2214 | DOI | MR | Zbl

[3] Tuganbaev A. A., Distributive Modules and Related Topics, Gordon and Breach Sci. Publ., Amsterdam, 1999 | Zbl

[4] Jategaonkar A. V., “Left principal ideal rings”, Lecture Notes in Math., 123, 1970, 1–145 | MR

[5] Feis K., Algebra: koltsa, moduli i kategorii, T. 2, Mir, M., 1979

[6] Armendariz E. P., Fisher J. W., “Regular P.I.-rings”, Proc. Amer. Math. Soc., 39:2 (1973), 247–251 | DOI | MR | Zbl

[7] Michler G. O., Villamayor O. E., “On rings whose simple modules are injective”, J. Algebra, 25 (1973), 185–201 | DOI | MR | Zbl