Geometrical Characterization of Strict Suns in $\ell^\infty(n)$
Matematičeskie zametki, Tome 70 (2001) no. 1, pp. 3-11.

Voir la notice de l'article provenant de la source Math-Net.Ru

A subset $M$ of a normed linear space $X$ is called a strict sun if, for any $x\in X\setminus M$, the set of its nearest points from $M$ is nonempty and for any point $y\in M$ which is nearest to $x$, the point $y$ is a nearest point from $M$ to any point of the ray $\{\lambda x+(1-\lambda)y\mid\lambda>0\}$. We give an intrinsic geometrical characterization of strict suns in the space $\ell^\infty(n)$.
@article{MZM_2001_70_1_a0,
     author = {A. R. Alimov},
     title = {Geometrical {Characterization} of {Strict} {Suns} in $\ell^\infty(n)$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {3--11},
     publisher = {mathdoc},
     volume = {70},
     number = {1},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_70_1_a0/}
}
TY  - JOUR
AU  - A. R. Alimov
TI  - Geometrical Characterization of Strict Suns in $\ell^\infty(n)$
JO  - Matematičeskie zametki
PY  - 2001
SP  - 3
EP  - 11
VL  - 70
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_70_1_a0/
LA  - ru
ID  - MZM_2001_70_1_a0
ER  - 
%0 Journal Article
%A A. R. Alimov
%T Geometrical Characterization of Strict Suns in $\ell^\infty(n)$
%J Matematičeskie zametki
%D 2001
%P 3-11
%V 70
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_70_1_a0/
%G ru
%F MZM_2001_70_1_a0
A. R. Alimov. Geometrical Characterization of Strict Suns in $\ell^\infty(n)$. Matematičeskie zametki, Tome 70 (2001) no. 1, pp. 3-11. http://geodesic.mathdoc.fr/item/MZM_2001_70_1_a0/

[1] Vlasov L. P., “Approksimativnye svoistva mnozhestv v lineinykh normirovannykh prostranstvakh”, UMN, 28:6 (1973), 1–66 | MR | Zbl

[2] Koscheev V. A., “Svyaznost i approksimativnye svoistva mnozhestv v lineinykh normirovannykh prostranstvakh”, Matem. zametki, 17:2 (1975), 193–204 | MR | Zbl

[3] Koscheev V. A., “Svyaznost i solnechnye svoistva mnozhestv v lineinykh normirovannykh prostranstvakh”, Matem. zametki, 19:2 (1976), 267–278 | MR | Zbl

[4] Menger K., “Untersuchungen über allgemeine Metrik”, Math. Ann., 100 (1928), 75–163 | DOI | MR

[5] Brown A. L., “Suns in normed linear spaces which are finite-dimensional”, Math. Ann., 279 (1987), 81–101 | DOI

[6] Berens H., Hetzelt L., “Die Metrische Struktur der Sonnen in $\ell ^\infty (n)$”, Aequat. Math., 27 (1984), 274–287 | DOI | MR | Zbl

[7] Braess D., “Geometrical characterizations for nonlinear uniform approximation”, J. Approximation Theory, 11 (1974), 260–274 | DOI | MR | Zbl

[8] Dunham Ch. B., “Characterizability and uniqueness in real Chebyshev approximation”, J. Approximation Theory, 2 (1969), 374–383 | DOI | MR | Zbl

[9] Brosowski B., Nich-Lineare Tschebyscheff-Approximation, I, Hochschulskripten, 808/808a, Hochschultaschenbücher Verlag; Bibliographisches Institut, Mannheim, 1968 | MR | Zbl

[10] Brosowski B., Wegmann R., “Charakterisierung bester Approximationen in normierten Räumen”, J. Approximation Theory, 3 (1970), 369–397 | DOI | MR | Zbl

[11] Gruber P. M., “Planar Chebyshev sets”, Mathem. Structure, Computational Math., Math. Modelling, V. 2, Bulgar. Acad. Sci., Sofia, 1984, 184–191

[12] Berens H., Hetzelt L., “Suns and contractive retracts in the plane”, Teoriya priblizhenii funktsii, Trudy mezhdunarodnoi konferentsii (Kiev, 31 maya–5 iyunya 1983 g.), eds. N. P. Korneichuk i dr., Nauka, M., 1987, 483–487

[13] Hetzelt L., “On suns and cosuns in finite-dimensional normed linear spaces”, Acta Math. Hung., 45 (1985), 53–68 | DOI | MR | Zbl

[14] Alimov A. R., “Chebyshëvskie kompakty na ploskosti”, Tr. MIAN, 219, Nauka, M., 1997, 8–26 | MR | Zbl

[15] Karlov M. I., Tsarkov I. G., “Vypuklost i svyaznost chebyshëvskikh mnozhestv i solnts”, Fundament. i prikl. matem., 3:4 (1997), 967–978 | MR | Zbl

[16] Oshman E. V., “Chebyshëvskie mnozhestva i nepreryvnost metricheskoi proektsii”, Izv. vuzov. Matem., 1970, no. 9, 78–82 | MR | Zbl

[17] Brøndsted A., “Chebyshev sets and convexity of Chebyshev sets, II”, Math. Scand., 18 (1966), 5–15 | MR