Geometrical Characterization of Strict Suns in $\ell^\infty(n)$
Matematičeskie zametki, Tome 70 (2001) no. 1, pp. 3-11

Voir la notice de l'article provenant de la source Math-Net.Ru

A subset $M$ of a normed linear space $X$ is called a strict sun if, for any $x\in X\setminus M$, the set of its nearest points from $M$ is nonempty and for any point $y\in M$ which is nearest to $x$, the point $y$ is a nearest point from $M$ to any point of the ray $\{\lambda x+(1-\lambda)y\mid\lambda>0\}$. We give an intrinsic geometrical characterization of strict suns in the space $\ell^\infty(n)$.
@article{MZM_2001_70_1_a0,
     author = {A. R. Alimov},
     title = {Geometrical {Characterization} of {Strict} {Suns} in $\ell^\infty(n)$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {3--11},
     publisher = {mathdoc},
     volume = {70},
     number = {1},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_70_1_a0/}
}
TY  - JOUR
AU  - A. R. Alimov
TI  - Geometrical Characterization of Strict Suns in $\ell^\infty(n)$
JO  - Matematičeskie zametki
PY  - 2001
SP  - 3
EP  - 11
VL  - 70
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_70_1_a0/
LA  - ru
ID  - MZM_2001_70_1_a0
ER  - 
%0 Journal Article
%A A. R. Alimov
%T Geometrical Characterization of Strict Suns in $\ell^\infty(n)$
%J Matematičeskie zametki
%D 2001
%P 3-11
%V 70
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_70_1_a0/
%G ru
%F MZM_2001_70_1_a0
A. R. Alimov. Geometrical Characterization of Strict Suns in $\ell^\infty(n)$. Matematičeskie zametki, Tome 70 (2001) no. 1, pp. 3-11. http://geodesic.mathdoc.fr/item/MZM_2001_70_1_a0/