Geometrical Characterization of Strict Suns in $\ell^\infty(n)$
Matematičeskie zametki, Tome 70 (2001) no. 1, pp. 3-11
Voir la notice de l'article provenant de la source Math-Net.Ru
A subset $M$ of a normed linear space $X$ is called a strict sun if, for any $x\in X\setminus M$, the set of its nearest points from $M$ is nonempty and for any point $y\in M$ which is nearest to $x$, the point $y$ is a nearest point from $M$ to any point of the ray $\{\lambda x+(1-\lambda)y\mid\lambda>0\}$. We give an intrinsic geometrical characterization of strict suns in the space $\ell^\infty(n)$.
@article{MZM_2001_70_1_a0,
author = {A. R. Alimov},
title = {Geometrical {Characterization} of {Strict} {Suns} in $\ell^\infty(n)$},
journal = {Matemati\v{c}eskie zametki},
pages = {3--11},
publisher = {mathdoc},
volume = {70},
number = {1},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2001_70_1_a0/}
}
A. R. Alimov. Geometrical Characterization of Strict Suns in $\ell^\infty(n)$. Matematičeskie zametki, Tome 70 (2001) no. 1, pp. 3-11. http://geodesic.mathdoc.fr/item/MZM_2001_70_1_a0/