Minimal Networks on the Regular $n$-Dimensional Simplex
Matematičeskie zametki, Tome 69 (2001) no. 6, pp. 854-865

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper gives the proof of the following fact: all simple, i.e., having no nodes of degree 2, trees that span the vertices of the regular $n$-dimensional simplex can be realized as nondegenerate minimal parametric networks.
@article{MZM_2001_69_6_a4,
     author = {G. A. Karpunin},
     title = {Minimal {Networks} on the {Regular} $n${-Dimensional} {Simplex}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {854--865},
     publisher = {mathdoc},
     volume = {69},
     number = {6},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_69_6_a4/}
}
TY  - JOUR
AU  - G. A. Karpunin
TI  - Minimal Networks on the Regular $n$-Dimensional Simplex
JO  - Matematičeskie zametki
PY  - 2001
SP  - 854
EP  - 865
VL  - 69
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_69_6_a4/
LA  - ru
ID  - MZM_2001_69_6_a4
ER  - 
%0 Journal Article
%A G. A. Karpunin
%T Minimal Networks on the Regular $n$-Dimensional Simplex
%J Matematičeskie zametki
%D 2001
%P 854-865
%V 69
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_69_6_a4/
%G ru
%F MZM_2001_69_6_a4
G. A. Karpunin. Minimal Networks on the Regular $n$-Dimensional Simplex. Matematičeskie zametki, Tome 69 (2001) no. 6, pp. 854-865. http://geodesic.mathdoc.fr/item/MZM_2001_69_6_a4/