Minimal Networks on the Regular $n$-Dimensional Simplex
Matematičeskie zametki, Tome 69 (2001) no. 6, pp. 854-865.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper gives the proof of the following fact: all simple, i.e., having no nodes of degree 2, trees that span the vertices of the regular $n$-dimensional simplex can be realized as nondegenerate minimal parametric networks.
@article{MZM_2001_69_6_a4,
     author = {G. A. Karpunin},
     title = {Minimal {Networks} on the {Regular} $n${-Dimensional} {Simplex}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {854--865},
     publisher = {mathdoc},
     volume = {69},
     number = {6},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_69_6_a4/}
}
TY  - JOUR
AU  - G. A. Karpunin
TI  - Minimal Networks on the Regular $n$-Dimensional Simplex
JO  - Matematičeskie zametki
PY  - 2001
SP  - 854
EP  - 865
VL  - 69
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_69_6_a4/
LA  - ru
ID  - MZM_2001_69_6_a4
ER  - 
%0 Journal Article
%A G. A. Karpunin
%T Minimal Networks on the Regular $n$-Dimensional Simplex
%J Matematičeskie zametki
%D 2001
%P 854-865
%V 69
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_69_6_a4/
%G ru
%F MZM_2001_69_6_a4
G. A. Karpunin. Minimal Networks on the Regular $n$-Dimensional Simplex. Matematičeskie zametki, Tome 69 (2001) no. 6, pp. 854-865. http://geodesic.mathdoc.fr/item/MZM_2001_69_6_a4/

[1] Karpunin G. A., “Analog teorii Morsa dlya ploskikh lineinykh setei i obobschennaya problema Shteinera”, Matem. sb., 191:2 (2000), 64–90 | MR | Zbl

[2] Karpunin G. A., “Analog teorii Morsa dlya ploskikh lineinykh setei i obobschennaya problema Shteinera”, Dopolnenie 2 k knige: Ivanov A. O., Tuzhilin A. A., Razvetvlennye geodezicheskie. Geometricheskaya teoriya lokalno minimalnykh setei, The Edwin Mellen Press, Lewiston, 1999, 388–407

[3] Ivanov A. O., Tuzhilin A. A., “Geometriya minimalnykh setei i odnomernaya problema Plato”, UMN, 47:2 (1992), 53–115 | MR | Zbl

[4] Gilbert E. N., Pollak H. O., “Steiner minimal trees”, SIAM J. Appl. Math., 16 (1968), 1–29 | DOI | MR | Zbl

[5] Smith W. D., “How to find Steiner minimal trees in Euclidean $d$-space”, Algorithmica, 7 (1992), 137–177 | DOI | MR | Zbl

[6] Ivanov A. O., Tuzhilin A. A., “Geometriya mnozhestva minimalnykh setei dannoi topologii s fiksirovannoi granitsei”, Izv. RAN. Ser. matem., 61:6 (1997), 119–152 | MR | Zbl

[7] Ivanov A. O., Geometricheskie svoistva lokalno minimalnykh setei, Diss. $\dots$ d.f.-m.n., MGU, M., 1998

[8] Ivanov A. O., Tuzhilin A. A., Minimal Networks. The Steiner Problem and Its Generalizations, CRC Press, Boca Raton, 1994 | Zbl

[9] Jung H. W. E., “Über die kleinste Kugel, die eine räumliche Figur einschliesst”, J. Reine Angew. Math., 123 (1901), 241–257

[10] Eggleston H. G., Convexity, Cambridge Tracts in Math. and Math. Phys., 47, Cambridge, 1992