Minimal Networks on the Regular $n$-Dimensional Simplex
Matematičeskie zametki, Tome 69 (2001) no. 6, pp. 854-865
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper gives the proof of the following fact: all simple, i.e., having no nodes of degree 2, trees that span the vertices of the regular $n$-dimensional simplex can be realized as nondegenerate minimal parametric networks.
@article{MZM_2001_69_6_a4,
author = {G. A. Karpunin},
title = {Minimal {Networks} on the {Regular} $n${-Dimensional} {Simplex}},
journal = {Matemati\v{c}eskie zametki},
pages = {854--865},
publisher = {mathdoc},
volume = {69},
number = {6},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2001_69_6_a4/}
}
G. A. Karpunin. Minimal Networks on the Regular $n$-Dimensional Simplex. Matematičeskie zametki, Tome 69 (2001) no. 6, pp. 854-865. http://geodesic.mathdoc.fr/item/MZM_2001_69_6_a4/