Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2001_69_6_a4, author = {G. A. Karpunin}, title = {Minimal {Networks} on the {Regular} $n${-Dimensional} {Simplex}}, journal = {Matemati\v{c}eskie zametki}, pages = {854--865}, publisher = {mathdoc}, volume = {69}, number = {6}, year = {2001}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2001_69_6_a4/} }
G. A. Karpunin. Minimal Networks on the Regular $n$-Dimensional Simplex. Matematičeskie zametki, Tome 69 (2001) no. 6, pp. 854-865. http://geodesic.mathdoc.fr/item/MZM_2001_69_6_a4/
[1] Karpunin G. A., “Analog teorii Morsa dlya ploskikh lineinykh setei i obobschennaya problema Shteinera”, Matem. sb., 191:2 (2000), 64–90 | MR | Zbl
[2] Karpunin G. A., “Analog teorii Morsa dlya ploskikh lineinykh setei i obobschennaya problema Shteinera”, Dopolnenie 2 k knige: Ivanov A. O., Tuzhilin A. A., Razvetvlennye geodezicheskie. Geometricheskaya teoriya lokalno minimalnykh setei, The Edwin Mellen Press, Lewiston, 1999, 388–407
[3] Ivanov A. O., Tuzhilin A. A., “Geometriya minimalnykh setei i odnomernaya problema Plato”, UMN, 47:2 (1992), 53–115 | MR | Zbl
[4] Gilbert E. N., Pollak H. O., “Steiner minimal trees”, SIAM J. Appl. Math., 16 (1968), 1–29 | DOI | MR | Zbl
[5] Smith W. D., “How to find Steiner minimal trees in Euclidean $d$-space”, Algorithmica, 7 (1992), 137–177 | DOI | MR | Zbl
[6] Ivanov A. O., Tuzhilin A. A., “Geometriya mnozhestva minimalnykh setei dannoi topologii s fiksirovannoi granitsei”, Izv. RAN. Ser. matem., 61:6 (1997), 119–152 | MR | Zbl
[7] Ivanov A. O., Geometricheskie svoistva lokalno minimalnykh setei, Diss. $\dots$ d.f.-m.n., MGU, M., 1998
[8] Ivanov A. O., Tuzhilin A. A., Minimal Networks. The Steiner Problem and Its Generalizations, CRC Press, Boca Raton, 1994 | Zbl
[9] Jung H. W. E., “Über die kleinste Kugel, die eine räumliche Figur einschliesst”, J. Reine Angew. Math., 123 (1901), 241–257
[10] Eggleston H. G., Convexity, Cambridge Tracts in Math. and Math. Phys., 47, Cambridge, 1992