Isotropic Subspaces of Polylinear Forms
Matematičeskie zametki, Tome 69 (2001) no. 6, pp. 925-933.

Voir la notice de l'article provenant de la source Math-Net.Ru

The dimensions of maximal isotropic subspaces of symmetric and skew-symmetric forms of degree $d$ in general position are found.
@article{MZM_2001_69_6_a12,
     author = {E. A. Tevelev},
     title = {Isotropic {Subspaces} of {Polylinear} {Forms}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {925--933},
     publisher = {mathdoc},
     volume = {69},
     number = {6},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_69_6_a12/}
}
TY  - JOUR
AU  - E. A. Tevelev
TI  - Isotropic Subspaces of Polylinear Forms
JO  - Matematičeskie zametki
PY  - 2001
SP  - 925
EP  - 933
VL  - 69
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_69_6_a12/
LA  - ru
ID  - MZM_2001_69_6_a12
ER  - 
%0 Journal Article
%A E. A. Tevelev
%T Isotropic Subspaces of Polylinear Forms
%J Matematičeskie zametki
%D 2001
%P 925-933
%V 69
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_69_6_a12/
%G ru
%F MZM_2001_69_6_a12
E. A. Tevelev. Isotropic Subspaces of Polylinear Forms. Matematičeskie zametki, Tome 69 (2001) no. 6, pp. 925-933. http://geodesic.mathdoc.fr/item/MZM_2001_69_6_a12/

[1] Bott R., “Homogeneous vector bundles”, Ann. Math., 66/2 (1957), 203–248 | DOI | MR | Zbl

[2] Tevelev E. A., “Podalgebry i diskriminanty antikommutativnykh algebr”, Izv. RAN. Ser. matem., 63 (3) (1999), 169–184 | MR | Zbl

[3] Pyasetskii V. S., “Deistviya lineinykh grupp s konechnym chislom orbit”, Funktsion. analiz i prilozh., 9 (1975), 351–353

[4] Popov V., Röhrle G., “On the number of orbits of a parabolic subgroup on its unipotent radical”, Algebraic Groups and Lie Groups, Austr. Math. Soc. Lecture Ser., 9, ed. G. I. Lehrer, 1997

[5] Hille L., Röhrle G., “On parabolic subgroups of classical groups with a finite number of orbits on the unipotent radical”, C. R. Acad. Sci. Paris Sér. I, 325 (1997), 465–470 | MR | Zbl

[6] Richardson R. W., “Finiteness theorems for orbits of algebraic groups”, Indag. Math., 88 (1985), 337–344

[7] Muller I., Rubenthaler H., Schiffmann G., “Structure des espaces préhomogènes associés à certaines algébres de Lie graduées”, Math. Ann., 274 (1986), 95–123 | DOI | MR | Zbl

[8] Vinberg E. B., Popov V. L., “Teoriya invariantov”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 55, VINITI, M., 1989, 137–314 | MR