Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2001_69_6_a12, author = {E. A. Tevelev}, title = {Isotropic {Subspaces} of {Polylinear} {Forms}}, journal = {Matemati\v{c}eskie zametki}, pages = {925--933}, publisher = {mathdoc}, volume = {69}, number = {6}, year = {2001}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2001_69_6_a12/} }
E. A. Tevelev. Isotropic Subspaces of Polylinear Forms. Matematičeskie zametki, Tome 69 (2001) no. 6, pp. 925-933. http://geodesic.mathdoc.fr/item/MZM_2001_69_6_a12/
[1] Bott R., “Homogeneous vector bundles”, Ann. Math., 66/2 (1957), 203–248 | DOI | MR | Zbl
[2] Tevelev E. A., “Podalgebry i diskriminanty antikommutativnykh algebr”, Izv. RAN. Ser. matem., 63 (3) (1999), 169–184 | MR | Zbl
[3] Pyasetskii V. S., “Deistviya lineinykh grupp s konechnym chislom orbit”, Funktsion. analiz i prilozh., 9 (1975), 351–353
[4] Popov V., Röhrle G., “On the number of orbits of a parabolic subgroup on its unipotent radical”, Algebraic Groups and Lie Groups, Austr. Math. Soc. Lecture Ser., 9, ed. G. I. Lehrer, 1997
[5] Hille L., Röhrle G., “On parabolic subgroups of classical groups with a finite number of orbits on the unipotent radical”, C. R. Acad. Sci. Paris Sér. I, 325 (1997), 465–470 | MR | Zbl
[6] Richardson R. W., “Finiteness theorems for orbits of algebraic groups”, Indag. Math., 88 (1985), 337–344
[7] Muller I., Rubenthaler H., Schiffmann G., “Structure des espaces préhomogènes associés à certaines algébres de Lie graduées”, Math. Ann., 274 (1986), 95–123 | DOI | MR | Zbl
[8] Vinberg E. B., Popov V. L., “Teoriya invariantov”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 55, VINITI, M., 1989, 137–314 | MR