On the Problem of Describing Sequences of Best Trigonometric Rational Approximations
Matematičeskie zametki, Tome 69 (2001) no. 6, pp. 919-924.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a strictly decreasing sequence $\{a_n\}^\infty_{n=0}$ of nonnegative real numbers converging to zero, we construct a continuous $2\pi$-periodic function $f$ such that $R^T_n(f)=a_n$, $n=0,1,2,\dots$, where $R^T_n(f)$ are best approximations of the function $f$ in uniform norm by trigonometric rational functions of degree at most $n$.
@article{MZM_2001_69_6_a11,
     author = {A. P. Starovoitov},
     title = {On the {Problem} of {Describing} {Sequences} of {Best} {Trigonometric} {Rational} {Approximations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {919--924},
     publisher = {mathdoc},
     volume = {69},
     number = {6},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_69_6_a11/}
}
TY  - JOUR
AU  - A. P. Starovoitov
TI  - On the Problem of Describing Sequences of Best Trigonometric Rational Approximations
JO  - Matematičeskie zametki
PY  - 2001
SP  - 919
EP  - 924
VL  - 69
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_69_6_a11/
LA  - ru
ID  - MZM_2001_69_6_a11
ER  - 
%0 Journal Article
%A A. P. Starovoitov
%T On the Problem of Describing Sequences of Best Trigonometric Rational Approximations
%J Matematičeskie zametki
%D 2001
%P 919-924
%V 69
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_69_6_a11/
%G ru
%F MZM_2001_69_6_a11
A. P. Starovoitov. On the Problem of Describing Sequences of Best Trigonometric Rational Approximations. Matematičeskie zametki, Tome 69 (2001) no. 6, pp. 919-924. http://geodesic.mathdoc.fr/item/MZM_2001_69_6_a11/

[1] Natanson I. P., Konstruktivnaya teoriya funktsii, GITTL, M.–L., 1949

[2] Timan A. F., Teoriya priblizheniya funktsii deistvitelnogo peremennogo, GIFML, M., 1950

[3] Dolzhenko E. P., “Sravnenie skorostei ratsionalnoi i polinomialnoi approksimatsii”, Matem. zametki, 1:3 (1967), 313–320 | MR | Zbl

[4] Pekarskii A. A., “Suschestvovanie funktsii s zadannymi nailuchshimi ravnomernymi ratsionalnymi priblizheniyami”, Izv. AN Belarusi. Ser. fiz.-matem. nauki, 1994, no. 1, 23–26 | MR | Zbl

[5] Nazarenko M. A., “Suschestvovanie funktsii s zadannymi ratsionalnymi priblizheniyami v prostranstve $C(A)$”, Vestn. MGU. Ser. 1. Matem., mekh., 1997, no. 4, 20–22 | MR

[6] Rusak V. N., Ratsionalnye funktsii kak apparat priblizheniya, BGU, Minsk, 1979

[7] Akhiezer N. I., Lektsii po teorii approksimatsii, Nauka, M., 1965

[8] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1977 | Zbl

[9] Starovoitov A. P., “Ob odnoi probleme Bernshteina–Dolzhenko”, International Conference on Approximation Theory and its Applications, Dedicated to the Memory of V. K. Dzjadyk. Abstracts, Institute of Math. Nat. Acad. Sci. Ukraine, Kyiv, 1999, 78

[10] Starovoitov A. P., “Opisanie posledovatelnostei nailuchshikh trigonometricheskikh ratsionalnykh priblizhenii”, Analiticheskie metody analiza i differentsialnykh uravnenii, Tez. dokl. mezhdunar. konf. (14–18 sentebrya 1999 g., Minsk, Belarus), BGU, Minsk, 1999, 213–214

[11] Starovoitov A. P., “K probleme opisaniya posledovatelnostei nailuchshikh trigonometricheskikh ratsionalnykh priblizhenii”, Dokl. NAN Belarusi, 44:2 (2000), 23–25 | MR