On the Problem of Describing Sequences of Best Trigonometric Rational Approximations
Matematičeskie zametki, Tome 69 (2001) no. 6, pp. 919-924

Voir la notice de l'article provenant de la source Math-Net.Ru

For a strictly decreasing sequence $\{a_n\}^\infty_{n=0}$ of nonnegative real numbers converging to zero, we construct a continuous $2\pi$-periodic function $f$ such that $R^T_n(f)=a_n$, $n=0,1,2,\dots$, where $R^T_n(f)$ are best approximations of the function $f$ in uniform norm by trigonometric rational functions of degree at most $n$.
@article{MZM_2001_69_6_a11,
     author = {A. P. Starovoitov},
     title = {On the {Problem} of {Describing} {Sequences} of {Best} {Trigonometric} {Rational} {Approximations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {919--924},
     publisher = {mathdoc},
     volume = {69},
     number = {6},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_69_6_a11/}
}
TY  - JOUR
AU  - A. P. Starovoitov
TI  - On the Problem of Describing Sequences of Best Trigonometric Rational Approximations
JO  - Matematičeskie zametki
PY  - 2001
SP  - 919
EP  - 924
VL  - 69
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_69_6_a11/
LA  - ru
ID  - MZM_2001_69_6_a11
ER  - 
%0 Journal Article
%A A. P. Starovoitov
%T On the Problem of Describing Sequences of Best Trigonometric Rational Approximations
%J Matematičeskie zametki
%D 2001
%P 919-924
%V 69
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_69_6_a11/
%G ru
%F MZM_2001_69_6_a11
A. P. Starovoitov. On the Problem of Describing Sequences of Best Trigonometric Rational Approximations. Matematičeskie zametki, Tome 69 (2001) no. 6, pp. 919-924. http://geodesic.mathdoc.fr/item/MZM_2001_69_6_a11/