On Groups with Finite Involution and Locally Finite 2-Isolated Subgroup of Even Period
Matematičeskie zametki, Tome 69 (2001) no. 6, pp. 912-918.

Voir la notice de l'article provenant de la source Math-Net.Ru

A proper subgroup $H$ of a group $G$ is said to be strongly isolated if it contains the centralizer of any nonidentity element of $H$ and 2-isolated if the conditions $C_G(g)\cap H\ne1$ and $2\in\pi(C_G(g))$ imply that $C_G(g)\le H$. An involution $i$ in a group $G$ is said to be finite if $|ii^g|\infty$ ($\forall g\in G$). In the paper we study a group $G$ with finite involution $i$ and with a 2-isolated locally finite subgroup $H$ containing an involution. It is proved that at least one of the following assertions holds: 1) all 2-elements of the group $G$ belong to $H$; 2) $(G,H)$ is a Frobenius pair, $H$ coincides with the centralizer of the only involution in $H$, and all involutions in $G$ are conjugate; 3) $G=F\leftthreetimes C_G(i)$ is a locally finite Frobenius group with Abelian kernel $F$; 4) $H=V\leftthreetimes D$ is a Frobenius group with locally cyclic noninvariant factor $D$ and a strongly isolated kernel $V$, $U=O_2(V)$ is a Sylow 2-subgroup of the group $G$, and $G$ is a $Z$-group of permutations of the set $\Omega=\{U^g\mid g\in G\}$.
@article{MZM_2001_69_6_a10,
     author = {A. I. Sozutov},
     title = {On {Groups} with {Finite} {Involution} and {Locally} {Finite} {2-Isolated} {Subgroup} of {Even} {Period}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {912--918},
     publisher = {mathdoc},
     volume = {69},
     number = {6},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_69_6_a10/}
}
TY  - JOUR
AU  - A. I. Sozutov
TI  - On Groups with Finite Involution and Locally Finite 2-Isolated Subgroup of Even Period
JO  - Matematičeskie zametki
PY  - 2001
SP  - 912
EP  - 918
VL  - 69
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_69_6_a10/
LA  - ru
ID  - MZM_2001_69_6_a10
ER  - 
%0 Journal Article
%A A. I. Sozutov
%T On Groups with Finite Involution and Locally Finite 2-Isolated Subgroup of Even Period
%J Matematičeskie zametki
%D 2001
%P 912-918
%V 69
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_69_6_a10/
%G ru
%F MZM_2001_69_6_a10
A. I. Sozutov. On Groups with Finite Involution and Locally Finite 2-Isolated Subgroup of Even Period. Matematičeskie zametki, Tome 69 (2001) no. 6, pp. 912-918. http://geodesic.mathdoc.fr/item/MZM_2001_69_6_a10/

[1] Busarkin V. M., “O $2$-izolirovannykh podgruppakh”, Matem. zametki, 3:5 (1968), 497–501 | MR | Zbl

[2] Sozutov A. I., “O nekotorykh beskonechnykh gruppakh s silno vlozhennoi podgruppoi”, Algebra i logika (to appear)

[3] Gorenstein D., Konechnye prostye gruppy, Mir, M., 1985 | Zbl

[4] Feit W., “On groups which contain Frobenius groups as subgroups”, Proc. Symp. Pure Math., 1959, 22–28 | MR | Zbl

[5] Suzuki M., “Two characteristic properties of $(ZT)$-groups”, Osaka Math. J., 15 (1963), 143–150 | MR | Zbl

[6] Busarkin V. M., “Stroenie izolirovannykh podgrupp v konechnykh gruppakh”, Algebra i logika, 4:2 (1965), 33–50 | MR | Zbl

[7] Herzog M., “On finite groups which contain a Frobenius subgroups”, J. Algebra, 6 (1967), 192–221 | DOI | MR | Zbl

[8] Kurosh A. G., Teoriya grupp, Nauka, M., 1967 | Zbl

[9] Starostin A. I., “O gruppakh Frobeniusa”, Ukr. matem. zh., 23:5 (1971), 629–639 | MR | Zbl

[10] Sozutov A. I., Shunkov V. P., “Ob odnom obobschenii teoremy Frobeniusa na beskonechnye gruppy”, Matem. sb., 100:4 (1976), 495–506 | MR | Zbl

[11] Kourovskaya tetrad, Nereshennye voprosy teorii grupp. 14-e izd., Novosibirsk, 1999

[12] Shunkov V. P., $Mp$-gruppy, Nauka, M., 1990 | Zbl

[13] Shunkov V. P., O vlozhenii primarnykh elementov v gruppe, Nauka, Novosibirsk, 1992 | Zbl