Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2001_69_6_a0, author = {V. P. Belavkin}, title = {On {Quantum} {Stochastic} {Differential} {Equations} as {Dirac} {Boundary-Value} {Problems}}, journal = {Matemati\v{c}eskie zametki}, pages = {803--819}, publisher = {mathdoc}, volume = {69}, number = {6}, year = {2001}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2001_69_6_a0/} }
V. P. Belavkin. On Quantum Stochastic Differential Equations as Dirac Boundary-Value Problems. Matematičeskie zametki, Tome 69 (2001) no. 6, pp. 803-819. http://geodesic.mathdoc.fr/item/MZM_2001_69_6_a0/
[1] Albeverio S., Kolokoltsov V. N., Smolyanov O. G., “Continuous quantum measurement: local and global approaches”, Rev. Math. Phys., 9:8 (1997), 907–920 | DOI | MR | Zbl
[2] Belavkin V. P., “A dynamical theory of quantum measurement and spontaneous localization”, Russian J. Math. Phys., 3:1 (1995), 3–23 | MR
[3] Accardi L., Alicki R., Frigerio A., Lu Y. G., “An invitation to the weak coupling and low density limits”, Quantum Probability and Related Topics, 6 (1991), 3–61 | Zbl
[4] Belavkin V. P., “A stochastic Hamiltonian approach for quantum jumps, spontaneous localizations, and continuous trajectories”, Quantum Semiclass. Opt., 8 (1996), 167–187 | DOI | MR
[5] Belavkin V. P., “Nondemolition principle of quantum measurement theory”, Foundations Phys., 24:5 (1994), 685–714 | DOI | MR
[6] Chebotarev A. M., “Kvantovoe stokhasticheskoe uravnenie unitarno ekvivalentno simmetrichnoi kraevoi zadache dlya uravneniya Shredingera”, Matem. zametki, 61:4 (1997), 510–518 | MR | Zbl
[7] Hudson R. L., Parthasarathy K. R., “Quantum Ito's formula and stochastic evolutions”, Comm. Math. Phys., 93:3 (1984), 301–323 | DOI | MR | Zbl