On Quantum Stochastic Differential Equations as Dirac Boundary-Value Problems
Matematičeskie zametki, Tome 69 (2001) no. 6, pp. 803-819.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that a single-jump unitary quantum stochastic evolution is unitarily equivalent to the Dirac boundary-value problem on the half-line in an extended space. It is shown that this solvable model can be derived from the Schrödinger boundary-value problem for a positive relativistic Hamiltonian on the half-line as the inductive ultrarelativistic limit corresponding to the input flow of Dirac particles with asymptotically infinite momenta. Thus the problem of stochastic approximation can be reduced to a quantum mechanical boundary-value problem in the extended space. The problem of microscopic time reversibility is also discussed in the paper.
@article{MZM_2001_69_6_a0,
     author = {V. P. Belavkin},
     title = {On {Quantum} {Stochastic} {Differential} {Equations} as {Dirac} {Boundary-Value} {Problems}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {803--819},
     publisher = {mathdoc},
     volume = {69},
     number = {6},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_69_6_a0/}
}
TY  - JOUR
AU  - V. P. Belavkin
TI  - On Quantum Stochastic Differential Equations as Dirac Boundary-Value Problems
JO  - Matematičeskie zametki
PY  - 2001
SP  - 803
EP  - 819
VL  - 69
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_69_6_a0/
LA  - ru
ID  - MZM_2001_69_6_a0
ER  - 
%0 Journal Article
%A V. P. Belavkin
%T On Quantum Stochastic Differential Equations as Dirac Boundary-Value Problems
%J Matematičeskie zametki
%D 2001
%P 803-819
%V 69
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_69_6_a0/
%G ru
%F MZM_2001_69_6_a0
V. P. Belavkin. On Quantum Stochastic Differential Equations as Dirac Boundary-Value Problems. Matematičeskie zametki, Tome 69 (2001) no. 6, pp. 803-819. http://geodesic.mathdoc.fr/item/MZM_2001_69_6_a0/

[1] Albeverio S., Kolokoltsov V. N., Smolyanov O. G., “Continuous quantum measurement: local and global approaches”, Rev. Math. Phys., 9:8 (1997), 907–920 | DOI | MR | Zbl

[2] Belavkin V. P., “A dynamical theory of quantum measurement and spontaneous localization”, Russian J. Math. Phys., 3:1 (1995), 3–23 | MR

[3] Accardi L., Alicki R., Frigerio A., Lu Y. G., “An invitation to the weak coupling and low density limits”, Quantum Probability and Related Topics, 6 (1991), 3–61 | Zbl

[4] Belavkin V. P., “A stochastic Hamiltonian approach for quantum jumps, spontaneous localizations, and continuous trajectories”, Quantum Semiclass. Opt., 8 (1996), 167–187 | DOI | MR

[5] Belavkin V. P., “Nondemolition principle of quantum measurement theory”, Foundations Phys., 24:5 (1994), 685–714 | DOI | MR

[6] Chebotarev A. M., “Kvantovoe stokhasticheskoe uravnenie unitarno ekvivalentno simmetrichnoi kraevoi zadache dlya uravneniya Shredingera”, Matem. zametki, 61:4 (1997), 510–518 | MR | Zbl

[7] Hudson R. L., Parthasarathy K. R., “Quantum Ito's formula and stochastic evolutions”, Comm. Math. Phys., 93:3 (1984), 301–323 | DOI | MR | Zbl