A Solvable Problem for the Stochastic Schr\"odinger Equation in Two Dimensions
Matematičeskie zametki, Tome 69 (2001) no. 5, pp. 740-750.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a new explicit solution of the stochastic Schrödinger equation describing a quantum model of the interferometric detector of gravitational waves. For the evolution of this quantum model, we estimate autocorrelation functions of the detected signal and perturbations created by the measuring device. We discuss the influence of the characteristics of the measuring procedure on optimal choice of the length of the moving window which is used to estimate the frequency of gravitational waves by the method of correlation functions.
@article{MZM_2001_69_5_a9,
     author = {A. V. Churkin},
     title = {A {Solvable} {Problem} for the {Stochastic} {Schr\"odinger} {Equation} in {Two} {Dimensions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {740--750},
     publisher = {mathdoc},
     volume = {69},
     number = {5},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_69_5_a9/}
}
TY  - JOUR
AU  - A. V. Churkin
TI  - A Solvable Problem for the Stochastic Schr\"odinger Equation in Two Dimensions
JO  - Matematičeskie zametki
PY  - 2001
SP  - 740
EP  - 750
VL  - 69
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_69_5_a9/
LA  - ru
ID  - MZM_2001_69_5_a9
ER  - 
%0 Journal Article
%A A. V. Churkin
%T A Solvable Problem for the Stochastic Schr\"odinger Equation in Two Dimensions
%J Matematičeskie zametki
%D 2001
%P 740-750
%V 69
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_69_5_a9/
%G ru
%F MZM_2001_69_5_a9
A. V. Churkin. A Solvable Problem for the Stochastic Schr\"odinger Equation in Two Dimensions. Matematičeskie zametki, Tome 69 (2001) no. 5, pp. 740-750. http://geodesic.mathdoc.fr/item/MZM_2001_69_5_a9/

[1] Belavkin V. P., “A posteriori Schrödinger equation for continuous observation,”, Phys. Lett. A, 140:78 (1990), 2930–2934

[2] Belavkin V. P., “Nondemolition measurements, nonlinear filtering and dynamic programming of quantum stochastic processes”, Lecture Notes in Control and Information, 121, Springer, Berlin, 1988, 245–265 | MR

[3] Belavkin V. P., Barchielli A., “Measurements continuous in time and a posteriori states in quantum mechanics”, J. Phys. A. Math. Gen., 24 (1991), 1495–1514 | DOI | MR

[4] Diosi L., “Continuous quantum measurement and Ito formalism”, Phys. Lett. A., 129 (1988), 419–423 | DOI | MR

[5] Mensky M. B., Decoherence and the theory of continuous measurements, , 1998 E-print quant-ph/9812017

[6] Gisin N., “Quantum measurement and stochastic processes”, Phys. Rev. Lett., 52 (1986), 1657–1660 | DOI | MR

[7] Nicholson D., Robertson D. I., Danzmann K., Results of the first coincident observations by two laser-interferometric gravitational wave detectors, , 1996 E-print gr-qc/9605048

[8] Braginsky V. B., Gorodetsky M. L., Khalili F. Ya., Quantum limits and symphotonic states in free-mass gravitational-wave antennae, , 1998 E-print quant-ph/9806081

[9] Chebotarev A. M., Tchourkin A. V., “Mathematical model of a quantum gravitational wave detector”, Math. Modeling, 11:8 (1999), 32–44

[10] Ito K., Makkin G., Diffuzionnye protsessy i ikh traektorii, Mir, M., 1968

[11] Belavkin V. P., “A dynamical theory of quantum measurement and spontaneous localization”, Russ. J. Math. Phys., 3:1 (1995), 3–24 | MR

[12] Belavkin V. P., “A quantum nonadapted Ito formula and nonstationary evolution in Fock space”, Quantum Probability and Related Topics, V. 1, World Sci., Singapore, 1991, 137–180 | MR

[13] Bendat Dzh., Pirsol A., Izmerenie i analiz sluchainykh protsessov, Mir, M., 1971