Comparison of the $L^1$-Norms of Total and Truncated Exponential Sums
Matematičeskie zametki, Tome 69 (2001) no. 5, pp. 699-707.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is concerned with a conjecture stated by S. V. Bochkarev in the seventies. He assumed that there exists a stability for the $L^1$-norm of trigonometric polynomials when adding new harmonics. In particular, the validity of this conjecture implies the well-known Littlewood inequality. The disproof of a statement close to Bochkarev's conjecture is given. For this, the following method is used: the $L^1$-norm of a sum of one-dimensional harmonics is replaced by the Lebesgue constant of a polyhedron of sufficiently high dimension.
@article{MZM_2001_69_5_a5,
     author = {S. V. Konyagin and M. A. Skopina},
     title = {Comparison of the $L^1${-Norms} of {Total} and {Truncated} {Exponential} {Sums}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {699--707},
     publisher = {mathdoc},
     volume = {69},
     number = {5},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_69_5_a5/}
}
TY  - JOUR
AU  - S. V. Konyagin
AU  - M. A. Skopina
TI  - Comparison of the $L^1$-Norms of Total and Truncated Exponential Sums
JO  - Matematičeskie zametki
PY  - 2001
SP  - 699
EP  - 707
VL  - 69
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_69_5_a5/
LA  - ru
ID  - MZM_2001_69_5_a5
ER  - 
%0 Journal Article
%A S. V. Konyagin
%A M. A. Skopina
%T Comparison of the $L^1$-Norms of Total and Truncated Exponential Sums
%J Matematičeskie zametki
%D 2001
%P 699-707
%V 69
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_69_5_a5/
%G ru
%F MZM_2001_69_5_a5
S. V. Konyagin; M. A. Skopina. Comparison of the $L^1$-Norms of Total and Truncated Exponential Sums. Matematičeskie zametki, Tome 69 (2001) no. 5, pp. 699-707. http://geodesic.mathdoc.fr/item/MZM_2001_69_5_a5/

[1] Hardy G. H., Littlewood J. E., “A new proof of a theorem of rearrangement”, J. London Math. Soc., 23:91 (1948), 163–168 | DOI | MR

[2] Bochkarev S. V., Metod usrednenii v teorii ortogonalnykh ryadov i nekotorye voprosy teorii bazisov, Tr. MIAN, 146, Nauka, M., 1978 | MR | Zbl

[3] Konyagin S. V., “O probleme Littlvuda”, Izv. AN SSSR. Ser. matem., 45:2 (1981), 243–265 | MR | Zbl

[4] McGehee O. C., Pigno L., Smith B., “Hardy's inequality and the $L^1$-norm of exponential sums”, Ann. of Math., 113:3 (1981), 613–618 | DOI | MR | Zbl

[5] Skopina M. A., “Ob asimptoticheskom povedenii konstant Lebega lineinykh metodov summirovaniya kratnykh ryadov Fure”, Izv. vuzov. Matem., 1986, no. 6, 70–71 | MR | Zbl

[6] Skopina M. A., “Konstanty Lebega kratnykh summ Valle Pussena”, Zapiski nauch. sem. LOMI, 125, Nauka, L., 1983, 154–165 | MR | Zbl