Comparison of the $L^1$-Norms of Total and Truncated Exponential Sums
Matematičeskie zametki, Tome 69 (2001) no. 5, pp. 699-707

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is concerned with a conjecture stated by S. V. Bochkarev in the seventies. He assumed that there exists a stability for the $L^1$-norm of trigonometric polynomials when adding new harmonics. In particular, the validity of this conjecture implies the well-known Littlewood inequality. The disproof of a statement close to Bochkarev's conjecture is given. For this, the following method is used: the $L^1$-norm of a sum of one-dimensional harmonics is replaced by the Lebesgue constant of a polyhedron of sufficiently high dimension.
@article{MZM_2001_69_5_a5,
     author = {S. V. Konyagin and M. A. Skopina},
     title = {Comparison of the $L^1${-Norms} of {Total} and {Truncated} {Exponential} {Sums}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {699--707},
     publisher = {mathdoc},
     volume = {69},
     number = {5},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_69_5_a5/}
}
TY  - JOUR
AU  - S. V. Konyagin
AU  - M. A. Skopina
TI  - Comparison of the $L^1$-Norms of Total and Truncated Exponential Sums
JO  - Matematičeskie zametki
PY  - 2001
SP  - 699
EP  - 707
VL  - 69
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_69_5_a5/
LA  - ru
ID  - MZM_2001_69_5_a5
ER  - 
%0 Journal Article
%A S. V. Konyagin
%A M. A. Skopina
%T Comparison of the $L^1$-Norms of Total and Truncated Exponential Sums
%J Matematičeskie zametki
%D 2001
%P 699-707
%V 69
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_69_5_a5/
%G ru
%F MZM_2001_69_5_a5
S. V. Konyagin; M. A. Skopina. Comparison of the $L^1$-Norms of Total and Truncated Exponential Sums. Matematičeskie zametki, Tome 69 (2001) no. 5, pp. 699-707. http://geodesic.mathdoc.fr/item/MZM_2001_69_5_a5/