Idempotent Functional Analysis: An Algebraic Approach
Matematičeskie zametki, Tome 69 (2001) no. 5, pp. 758-797.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to Idempotent Functional Analysis, which is an “abstract” version of Idempotent Analysis developed by V. P. Maslov and his collaborators. We give a brief survey of the basic ideas of Idempotent Analysis. The correspondence between concepts and theorems of traditional Functional Analysis and its idempotent version is discussed in the spirit of N. Bohr's correspondence principle in quantum theory. We present an algebraic approach to Idempotent Functional Analysis. Basic notions and results are formulated in algebraic terms; the essential point is that the operation of idempotent addition can be defined for arbitrary infinite sets of summands. We study idempotent analogs of the basic principles of linear functional analysis and results on the general form of a linear functional and scalar products in idempotent spaces.
@article{MZM_2001_69_5_a11,
     author = {G. L. Litvinov and V. P. Maslov and G. B. Shpiz},
     title = {Idempotent {Functional} {Analysis:} {An} {Algebraic} {Approach}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {758--797},
     publisher = {mathdoc},
     volume = {69},
     number = {5},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_69_5_a11/}
}
TY  - JOUR
AU  - G. L. Litvinov
AU  - V. P. Maslov
AU  - G. B. Shpiz
TI  - Idempotent Functional Analysis: An Algebraic Approach
JO  - Matematičeskie zametki
PY  - 2001
SP  - 758
EP  - 797
VL  - 69
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_69_5_a11/
LA  - ru
ID  - MZM_2001_69_5_a11
ER  - 
%0 Journal Article
%A G. L. Litvinov
%A V. P. Maslov
%A G. B. Shpiz
%T Idempotent Functional Analysis: An Algebraic Approach
%J Matematičeskie zametki
%D 2001
%P 758-797
%V 69
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_69_5_a11/
%G ru
%F MZM_2001_69_5_a11
G. L. Litvinov; V. P. Maslov; G. B. Shpiz. Idempotent Functional Analysis: An Algebraic Approach. Matematičeskie zametki, Tome 69 (2001) no. 5, pp. 758-797. http://geodesic.mathdoc.fr/item/MZM_2001_69_5_a11/

[1] Avdoshin S. M., Belov V. V., Maslov V. P., Matematicheskie aspekty sinteza vychislitelnykh sred, MIEM, M., 1984

[2] Maslov V. P., Asimptoticheskie metody resheniya psevdodifferentsialnykh uravnenii, Nauka, M., 1987

[3] Maslov V. P., “O novom printsipe superpozitsii dlya zadach optimizatsii”, UMN, 42:3 (1987), 39–48 | MR | Zbl

[4] Maslov V. P., Méthodes opératorielles, Mir, Moscow, 1987 | Zbl

[5] Avdoshin S. M., Belov V. V., Maslov V. P., Chebotarev A. M., “Design of computational media: mathematical aspects”, Mathematical Aspects of Computer Engineering, eds. V. P. Maslov, K. A. Volosov, Mir, Moscow, 1988, 9–145

[6] Maslov V. P., Samborskiĭ S. N. (eds.), Idempotent Analysis, Adv. Sov. Math., 13, Amer. Math. Soc., Providence (R.I.), 1992

[7] Maslov V. P., Kolokoltsov V. N., Idempotentnyi analiz i ego primenenie v optimalnom upravlenii, Nauka, M., 1994

[8] Kolokoltsov V. N., Maslov V. P., Idempotent Analysis and Applications, Kluwer Acad. Publ., Dordrecht, 1997 | Zbl

[9] Litvinov G. L., Maslov V. P., Correspondence Principle for Idempotent Calculus and Some Computer Applications, IHES/M/95/33, Institut des Hautes Études Scientifiques, Bures-sur-Yvette, 1995; Idempotency, Publ. of the Newton Institute, Cambridge Univ. Press, Cambridge, 1998, 420–443 | MR | Zbl

[10] Litvinov G. L., Maslov V. P., “Idempotentnaya matematika: printsip sootvetstviya i ego kompyuternye prilozheniya”, UMN, 51:6 (1996), 209–210 | MR | Zbl

[11] Dudnikov P. I., Samborskii S. N., “Endomorfizmy polumodulei nad polukoltsami s idempotentnoi operatsiei”, Izv. AN SSSR. Ser. matem., 55:1 (1991), 91–105 | MR | Zbl

[12] Bacelli F. L., Cohen G., Olsder G. J., Quadrat J.-P., Synchronization and Linearity: an Algebra for Discrete Event Systems, John Wiley Sons Publ., New York, 1992

[13] Gunawardena J. (ed.), Idempotency, Publ. of the Newton Institute, Cambridge Univ. Press, Cambridge, 1998

[14] Shubin M. A., Algebraicheskie zamechaniya ob idempotentnykh polukoltsakh i teorema o yadre v prostranstvakh ogranichennykh funktsii, Institut novykh tekhnologii, M., 1990 | Zbl

[15] Kleene S. C., “Representation of events in nerve nets and finite automata”, Automata Studies, eds. J. McCarthy, C. Shannon, Princeton Univ. Press, Princeton, 1956, 3–40 | MR

[16] Carré B. A., “An algebra for network routine problems”, J. Inst. Math. Appl., 7 (1971), 273–294 | DOI | MR | Zbl

[17] Carré B. A., Graphs and Networks, The Clarendon Press; Oxford Univ. Press, Oxford, 1979 | Zbl

[18] Gondran M., Minoux M., Graphes et algorithmes, Eyrolles, Paris, 1979 | Zbl

[19] Cuningham-Green R. A., Minimax Algebra, Springer Lect. Notes in Economics and Math. Systems, 166, 1979 | Zbl

[20] Zimmermann U., Linear and Combinatorial Optimization in Ordered Algebraic Structures, Ann. Discrete Math., 10, 1981 | Zbl

[21] Golan J. S., Semirings and Their Applications, Kluwer Acad. Publ., Dordrecht, 1999

[22] Skornyakov L. A. (red.), Obschaya algebra, Spravochnaya matematicheskaya biblioteka, 1, Nauka, M., 1990; 2, Наука, М., 1991

[23] Birkgof G., Teoriya reshetok, Nauka, M., 1984

[24] Vulikh B. Z., Vvedenie v teoriyu poluuporyadochennykh prostranstv, Fizmatgiz, M., 1961

[25] Dei M. M., Normirovannye lineinye prostranstva, IL, M., 1961

[26] Shefer Kh., Topologicheskie vektornye prostranstva, Mir, M., 1971

[27] Fuks L., Chastichno uporyadochennye algebraicheskie sistemy, Mir, M., 1965

[28] Del Moral P., “A survey of Maslov optimization theory”, Idempotent Analysis and Applications, Kluwer Acad. Publ., Dordrecht, 1997

[29] Huillet T., Rigal G., Salut G., Optimal Versus Random Processes: a General Framework, IFAC World Congress (Tallin, USSR, 17–18 August 1990), 1989; CNRS-LAAS Report No. 89251, juillet 1989, Toulouse, 6 pp.

[30] Gohen G., Quadrat J.-P. (eds.), Proceedings of the 11th Conf. on Analysis and Optimization of Systems: Discrete Event Systems, Springer Lecture Notes in Control and Information Sciences, 199, 1994

[31] Del Moral P., Noyer J.-Ch., Salut G., “Maslov optimization theory: stochastic interpretation, particle resolution”, Proceedings of the 11th Conf. on Analysis and Optimization of Systems: Discrete Event Systems, Springer Lecture Notes in Control and Information Sciences, 199, 1994, 312–318 | Zbl

[32] Akian M., Quadrat J.-P., Voit M., “Bellman processes”, Proceedings of the 11th Conf. on Analysis and Optimization of Systems: Discrete Event Systems, Springer Lecture Notes in Control and Information Sciences, 199, 1994 | Zbl

[33] Quadrat J. P., “Max-plus algebra and applications to system theory and optimal control”, Proceedings of the International Congress of Mathematicians, Zürich, 1994 (with Max-Plus Working Group)

[34] Akian M., Quadrat J.-P., Voit M., “Duality between probability and optimization”, Idempotency, Publ. of the Newton Institute, Cambridge Univ. Press, Cambridge, 1998, 331–353 | MR | Zbl

[35] Del Moral P., “Maslov optimization theory. Topological aspects”, Idempotency, Publ. of the Newton Institute, Cambridge Univ. Press, Cambridge, 1998, 354–382 | Zbl

[36] Hasse M., “Über die Behandlung graphentheoretischer Probleme unter Verwendung der Matrizenrechnung”, Wiss. Z. (Techn. Univer. Dresden), 10 (1961), 1313–1316 | MR | Zbl

[37] Lich Dzh. U., Klassicheskaya mekhanika, IL, M., 1961

[38] Feinman R., Khibs A., Kvantovaya mekhanika i integraly po traektoriyam, Mir, M., 1968

[39] Makki Dzh., Lektsii po matematicheskim osnovam kvantovoi teorii, Mir, M., 1965

[40] Nelson E., Probability Theory and Euclidian Field Theory, Constructive Quantum Field Theory, Lecture Notes in Physics, 25, Springer-Verlag, Berlin, 1973

[41] Vasilev A. N., Funktsionalnye metody v kvantovoi teorii polya i statistike, Izd-vo LGU, L., 1976

[42] Samborskii S., “The Lagrange problem from the point of view of idempotent analysis”, Idempotency, Publ. of the Newton Institute, Cambridge Univ. Press, Cambridge, 1998, 303–321 | MR

[43] Maslov V. P., Samborskii S. N., “Kraevye zadachi dlya statsionarnykh uravnenii Gamiltona–Yakobi i Bellmana”, Ukr. matem. zh., 49:3 (1997), 433–447 | MR

[44] Maslov V. P., “Novyi podkhod k obobschennym resheniyam nelineinykh sistem”, Dokl. AN SSSR, 292:1 (1987), 37–41 | MR | Zbl

[45] Banaschewski B., Nelson E., “Tensor products and bimorphisms”, Canad. Math. Bull., 19:4 (1976), 385–402 | MR | Zbl

[46] Burbaki N., Obschaya topologiya. Topologicheskie gruppy. Chisla i svyazannye s nimi gruppy i prostranstva, Nauka, M., 1969

[47] Tikhomirov V. M., “Vypuklyi analiz”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 14, VINITI, M., 1987, 5–101 | MR

[48] Giles J. R., Convex Analysis with Application in the Differentiation of Convex Functions, Pitman Publ., Boston–London–Melbourne, 1982 | Zbl

[49] Gunawardena J., “An introduction to idempotency”, Idempotency, Publ. of the Newton Institute, Cambridge Univ. Press, Cambridge, 1998, 1–49 | MR | Zbl

[50] Sarymsakov G. A., Topologicheskie polupolya, Fan, Tashkent, 1969 | Zbl

[51] Eilenberg S., Automata, Languages and Machines, Academic Press, 1974 | Zbl

[52] Conway J. H., Regular Algebra and Finite Machines, Chapman and Hall Math. Ser., London, 1971 | Zbl

[53] Rosenthal K. I., Quantales and Their Applications, Pitman Research Notes in Math. Ser., Longman Sci. Tech., 1990 | Zbl

[54] Joyal A., Tierney M., “An extension of the Galois theory of Grothendieck”, Mem. Amer. Math. Soc., 51, no. 309 (1984) | MR

[55] Pandit S. N., “A new matrix calculus”, SIAM J. Appl. Math., 9:4 (1961), 632–639 | DOI | MR | Zbl

[56] Vorobev N. N., “Ekstremalnaya algebra matrits”, Dokl. AN SSSR, 152:1 (1963), 24–27 | MR | Zbl

[57] Vorobev N. N., “Ekstremalnaya algebra polozhitelnykh matrits”, Elektronische Informationsverarbeitung und Kybernetik, 3 (1967), 39–71 | MR

[58] Vorobev N. N., “Ekstremalnaya algebra neotritsatelnykh matrits”, Elektronische Informationsverarbeitung und Kybernetik, 6 (1970), 302–312

[59] Korbut A. A., “Ekstremalnye prostranstva”, Dokl. AN SSSR, 164:6 (1965), 1229–1231 | MR | Zbl

[60] Zimmermann K., “A general separation theorem in extremal algebras”, Ekonomicko-Matematicky Obzor (Prague), 13:2 (1977), 179–201 | Zbl

[61] Cohen G., Gaubert S., Quadrat J.-P., “Hahn–Banach Separation Theorem for Max-Plus Semimodules”, Proceedings of “Conférence en l'honneur du Professeur Alain Bensoussan à l'occasion de son 60ème anniversaire” (4–5 dec. 2000, Paris), IOS, Netherlands (to appear)

[62] Butkovič P., “Strong regularity of matrices – a survey of results”, Discrete Applied Math., 48 (1994), 45–68 | DOI | MR | Zbl

[63] Kolokoltsov V., “Idempotent structures in optimization”, Proceedings of L. S. Pontryagin Conference, Itogi Nauki i Tehniki. Surveys in Modern Mathematics and Applications. Optimal Control, 65, VINITI, 1999, 118–174 | MR | Zbl

[64] Bellman R., Karush W., “On a new functional transform in analysis: the maximum transform”, Bull. Amer. Math. Soc., 67 (1961), 501–503 | DOI | MR | Zbl

[65] Romanovskii I. V., “Optimizatsiya statsionarnogo upravleniya diskretnym determinirovannym protsessom”, Kibernetika, 1967, no. 2, 66–78 | MR | Zbl

[66] Romanovskii I. V., “Asimptoticheskoe povedenie diskretnogo determinirovannogo protsessa s nepreryvnym mnozhestvom sostoyanii”, Optimalnoe planirovanie, Sbornik trudov IM SO AN SSSR. T. 8, 1967, 171–193 | Zbl

[67] Schrödinger E., “Quantization as an eigenvalue problem”, Annalen der Physik, 364 (1926), 361–376 | DOI

[68] Hopf E., “The partial differential equation $u_t+uu_x=\mu u_{xx}$”, Comm. Pure Appl. Math., 3 (1950), 201–230 | DOI | MR | Zbl

[69] Lions P.-L., Generalized Solutions of Hamilton–Jacobi Equations, Pitman, Boston, 1982

[70] Crandall M. G., Ishii H., Lions P.-L., “A user's guide to viscosity solutions”, Bull. Amer. Math. Soc., 27 (1992), 1–67 | DOI | MR | Zbl

[71] Fleming W. H., Soner H. M., Controlled Markov Processes and Viscosity Solutions, Springer, New York, 1993 | Zbl

[72] Subbotin A. I., “Minimaksnye resheniya uravnenii s chastnymi proizvodnymi pervogo poryadka”, UMN, 51:2 (1996), 105–138 | MR | Zbl

[73] Capuzzo Dolcetta I., Lions P.-L. (eds.), Viscosity Solutions and Applications, Lecture Notes in Math, 1660, Springer, 1997

[74] Lax P. D., “Hyperbolic systems of conservation laws, II”, Comm. Pure Appl. Math., 10 (1957), 537–566 | DOI | MR | Zbl

[75] Oleinik O. A., “Razryvnye resheniya nelineinykh differentsialnykh uravnenii”, UMN, 12:3 (1957), 3–73 | MR

[76] Viro O., “Dequantization of real algebraic geometry on a logarithmic paper”, 3rd European Congress of Math. (Barcelona. July 10 to 14, 2000)

[77] Litvinov G. L., Maslov V. P., Shpiz G. B., “Lineinye funktsionaly na idempotentnykh prostranstvakh. Algebraicheskii podkhod”, Dokl. RAN, 363:3 (1998), 298–300 | MR | Zbl

[78] Litvinov G. L., Maslov V. P., Shpiz G. B., Idempotentnyi funktsionalnyi analiz. Algebraicheskii podkhod, Mezhdunarodnyi Tsentr “Sofus Li”, M., 1998

[79] Litvinov G. L., Maslov V. P., Shpiz G. B., Idempotent Functional Analysis: An Algebraic Approach, , 2000 E-print math.FA/0009128

[80] Litvinov G. L., Maslov V. P., Shpiz G. B., “Tenzornye proizvedeniya idempotentnykh polumodulei. Algebraicheskii podkhod”, Matem. zametki, 65:4 (1999), 573–586 | MR | Zbl

[81] Grothendieck A., Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc., 16, Amer. Math. Soc., Providence (R.I.), 1955