Central Limit Theorem for a Class of Nonhomogeneous Random Walks
Matematičeskie zametki, Tome 69 (2001) no. 5, pp. 751-757.

Voir la notice de l'article provenant de la source Math-Net.Ru

A spatially nonhomogeneous random walk $\eta_t$ on the grid $\mathbb Z^\nu=\mathbb Z^m\times\mathbb Z^n$ is considered. Let $\eta_t^0$ be a random walk homogeneous in time and space, and let $\eta_t$ be obtained from it by changing transition probabilities on the set $A=\overline A\times\mathbb Z^n$, $|\overline A|\infty$, so that the walk remains homogeneous only with respect to the subgroup $\mathbb Z^n$ of the group $\mathbb Z^\nu$. It is shown that if $m\ge2$ or the drift is distinct from zero, then the central limit theorem holds for $\eta_t$.
@article{MZM_2001_69_5_a10,
     author = {D. A. Yarotskii},
     title = {Central {Limit} {Theorem} for a {Class} of {Nonhomogeneous} {Random} {Walks}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {751--757},
     publisher = {mathdoc},
     volume = {69},
     number = {5},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_69_5_a10/}
}
TY  - JOUR
AU  - D. A. Yarotskii
TI  - Central Limit Theorem for a Class of Nonhomogeneous Random Walks
JO  - Matematičeskie zametki
PY  - 2001
SP  - 751
EP  - 757
VL  - 69
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_69_5_a10/
LA  - ru
ID  - MZM_2001_69_5_a10
ER  - 
%0 Journal Article
%A D. A. Yarotskii
%T Central Limit Theorem for a Class of Nonhomogeneous Random Walks
%J Matematičeskie zametki
%D 2001
%P 751-757
%V 69
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_69_5_a10/
%G ru
%F MZM_2001_69_5_a10
D. A. Yarotskii. Central Limit Theorem for a Class of Nonhomogeneous Random Walks. Matematičeskie zametki, Tome 69 (2001) no. 5, pp. 751-757. http://geodesic.mathdoc.fr/item/MZM_2001_69_5_a10/

[1] Zhizhina E. A., Minlos R. A., “Lokalnaya predelnaya teorema dlya neodnorodnogo sluchainogo bluzhdaniya na reshetke”, Teoriya veroyatnostei i ee primeneniya, 39:3 (1994), 513–529 | MR | Zbl

[2] Minlos P. A., Zhizhina E. A., “The limiting theorems for a random walk of two particles on the lattice $\mathbb Z^\nu $”, Potential Analysis, 5 (1996), 139–172 | DOI | MR | Zbl

[3] Gikhman I. I., Skorokhod A. V., Teoriya sluchainykh protsessov, T. 1, Nauka, M., 1971

[4] Spitser F., Printsipy sluchainogo bluzhdaniya, Mir, M., 1969

[5] Duffin R. J., “Discrete potential theory”, Duke Math. J., 20 (1953), 233–251 | DOI | MR