Nontrivial Critical Networks. Singularities of Lagrangians and a Criterion for Criticality
Matematičeskie zametki, Tome 69 (2001) no. 4, pp. 566-580
Cet article a éte moissonné depuis la source Math-Net.Ru
We single out the class of so-called quasiregular Lagrangians, which have singularities on the zero section of the cotangent bundle to the manifold on which extremal networks are considered. A criterion for a network to be extremal is proved for such Lagrangians: the Euler–Lagrange equations must be satisfied on each edge, and some matching conditions must be valid at the vertices.
@article{MZM_2001_69_4_a4,
author = {A. O. Ivanov and A. A. Tuzhilin and L\^e H\^ong V\^an},
title = {Nontrivial {Critical} {Networks.} {Singularities} of {Lagrangians} and a {Criterion} for {Criticality}},
journal = {Matemati\v{c}eskie zametki},
pages = {566--580},
year = {2001},
volume = {69},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2001_69_4_a4/}
}
TY - JOUR AU - A. O. Ivanov AU - A. A. Tuzhilin AU - Lê Hông Vân TI - Nontrivial Critical Networks. Singularities of Lagrangians and a Criterion for Criticality JO - Matematičeskie zametki PY - 2001 SP - 566 EP - 580 VL - 69 IS - 4 UR - http://geodesic.mathdoc.fr/item/MZM_2001_69_4_a4/ LA - ru ID - MZM_2001_69_4_a4 ER -
A. O. Ivanov; A. A. Tuzhilin; Lê Hông Vân. Nontrivial Critical Networks. Singularities of Lagrangians and a Criterion for Criticality. Matematičeskie zametki, Tome 69 (2001) no. 4, pp. 566-580. http://geodesic.mathdoc.fr/item/MZM_2001_69_4_a4/
[1] Ivanov A. O., Tuzhilin A. A., Branching Solutions of One-Dimensional Variational Problems, World Publisher Press, 2000 (to appear)
[2] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya, Nauka, M., 1986
[3] Ivanov A. O., Tuzhilin A. A., “Geometriya minimalnykh setei i odnomernaya problema Plato”, UMN, 47:2 (284) (1992), 53–115 | MR | Zbl
[4] Ivanov A. O., Tuzhilin A. A., Minimal Networks. The Steiner Problem and Its Generalizations, CRC Press, N.W., Boca Raton, Florida, 1994 | Zbl