The Ingham Divisor Problem on the Set of Numbers without $k$h Powers
Matematičeskie zametki, Tome 69 (2001) no. 3, pp. 383-401
Cet article a éte moissonné depuis la source Math-Net.Ru
Suppose that $k$ and $l$ are integers such that $k\ge2$ and $l\ge2$ , $M_k$ is a set of numbers without $k$th powers, and $\tau(n)=\sum_{d\mid n}1$. In this paper, we obtain asymptotic estimates of the sums $\sum\tau(n)\tau(n+1)$ over $n\le x$, $n\in M_k$.
@article{MZM_2001_69_3_a7,
author = {T. K. Ikonnikova},
title = {The {Ingham} {Divisor} {Problem} on the {Set} of {Numbers} without $k$h {Powers}},
journal = {Matemati\v{c}eskie zametki},
pages = {383--401},
year = {2001},
volume = {69},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2001_69_3_a7/}
}
T. K. Ikonnikova. The Ingham Divisor Problem on the Set of Numbers without $k$h Powers. Matematičeskie zametki, Tome 69 (2001) no. 3, pp. 383-401. http://geodesic.mathdoc.fr/item/MZM_2001_69_3_a7/
[1] Ingham A. E., “Some asymptotic formulae in the theory of numbers”, J. London Math. Soc., 2:3 (1927), 202–208 | DOI
[2] Esterman T., “Über die Darstellung einer Zahl als Differenz von zwei Produkten”, J. Reine Angew. Math., 164 (1931), 173–182 | Zbl
[3] Ismoilov D., “Ob asimptotike predstavleniya chisel kak raznosti dvukh proizvedenii”, Dokl. AN Tadzh. SSR, 22:2 (1979), 75–79 | MR | Zbl
[4] Heath-Brown D. R., “The fourth power moment of the Riemann zeta function”, Proc. London Math. Soc., 38:3 (1979), 385–422 | DOI | MR | Zbl
[5] Pavlov A. I., “O probleme delitelei Ingama”, Matem. zametki, 68:3 (2000), 429–438 | MR | Zbl