@article{MZM_2001_69_3_a6,
author = {I. V. Izmest'ev},
title = {Three-Dimensional {Manifolds} {Defined} by {Coloring} a {Simple} {Polytope}},
journal = {Matemati\v{c}eskie zametki},
pages = {375--382},
year = {2001},
volume = {69},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2001_69_3_a6/}
}
I. V. Izmest'ev. Three-Dimensional Manifolds Defined by Coloring a Simple Polytope. Matematičeskie zametki, Tome 69 (2001) no. 3, pp. 375-382. http://geodesic.mathdoc.fr/item/MZM_2001_69_3_a6/
[1] Davis M. W., Januszkiewicz T., “Convex polytopes, Coxeter orbifolds and torus actions”, Duke Math. J., 62:2 (1991), 417–451 | DOI | MR | Zbl
[2] Bukhshtaber V. M., Panov T. E., “Deistviya tora i mnogoobraziya, opredelyaemye prostymi mnogogrannikami”, Tr. MIAN, 225, Nauka, M., 1999, 96–131 | MR
[3] Dynkin E. B., Uspenskii V. A., Matematicheskie besedy, GITTL, M.–L., 1952
[4] Brensted A., Vvedenie v teoriyu vypuklykh mnogogrannikov, Mir, M., 1988
[5] Buchstaber V. M., Ray N., “Tangential structures on toric manifolds, and connected sums of polytopes”, UMIST. Manchester, 5 (2000) | Zbl
[6] Prasolov V. V., Sosinskii A. B., Uzly, zatsepleniya, kosy i trekhmernye mnogoobraziya, MTsNMO, M., 1997
[7] Kirby R., “A calculus for framed links in $S^3$”, Invent. Math., 45 (1978), 35–56 | DOI | MR | Zbl