Three-Dimensional Manifolds Defined by Coloring a Simple Polytope
Matematičeskie zametki, Tome 69 (2001) no. 3, pp. 375-382.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper we introduce and study a class of three-dimensional manifolds endowed with the action of the group $\mathbb Z_2^3$ whose orbit space is a simple convex polytope. These manifolds originate from three-dimensional polytopes whose faces allow a coloring into three colors with the help of the construction used for studying quasitoric manifolds. For such manifolds we prove the existence of an equivariant embedding into Euclidean space $\mathbb R^4$. We also describe the action on the set of operations of the equivariant connected sum and the equivariant Dehn surgery. We prove that any such manifold can be obtained from a finitely many three-dimensional tori with the canonical action of the group $\mathbb Z_2^3$ by using these operations.
@article{MZM_2001_69_3_a6,
     author = {I. V. Izmest'ev},
     title = {Three-Dimensional {Manifolds} {Defined} by {Coloring} a {Simple} {Polytope}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {375--382},
     publisher = {mathdoc},
     volume = {69},
     number = {3},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_69_3_a6/}
}
TY  - JOUR
AU  - I. V. Izmest'ev
TI  - Three-Dimensional Manifolds Defined by Coloring a Simple Polytope
JO  - Matematičeskie zametki
PY  - 2001
SP  - 375
EP  - 382
VL  - 69
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_69_3_a6/
LA  - ru
ID  - MZM_2001_69_3_a6
ER  - 
%0 Journal Article
%A I. V. Izmest'ev
%T Three-Dimensional Manifolds Defined by Coloring a Simple Polytope
%J Matematičeskie zametki
%D 2001
%P 375-382
%V 69
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_69_3_a6/
%G ru
%F MZM_2001_69_3_a6
I. V. Izmest'ev. Three-Dimensional Manifolds Defined by Coloring a Simple Polytope. Matematičeskie zametki, Tome 69 (2001) no. 3, pp. 375-382. http://geodesic.mathdoc.fr/item/MZM_2001_69_3_a6/

[1] Davis M. W., Januszkiewicz T., “Convex polytopes, Coxeter orbifolds and torus actions”, Duke Math. J., 62:2 (1991), 417–451 | DOI | MR | Zbl

[2] Bukhshtaber V. M., Panov T. E., “Deistviya tora i mnogoobraziya, opredelyaemye prostymi mnogogrannikami”, Tr. MIAN, 225, Nauka, M., 1999, 96–131 | MR

[3] Dynkin E. B., Uspenskii V. A., Matematicheskie besedy, GITTL, M.–L., 1952

[4] Brensted A., Vvedenie v teoriyu vypuklykh mnogogrannikov, Mir, M., 1988

[5] Buchstaber V. M., Ray N., “Tangential structures on toric manifolds, and connected sums of polytopes”, UMIST. Manchester, 5 (2000) | Zbl

[6] Prasolov V. V., Sosinskii A. B., Uzly, zatsepleniya, kosy i trekhmernye mnogoobraziya, MTsNMO, M., 1997

[7] Kirby R., “A calculus for framed links in $S^3$”, Invent. Math., 45 (1978), 35–56 | DOI | MR | Zbl