Extremum Problem for Periodic Functions Supported in a Ball
Matematičeskie zametki, Tome 69 (2001) no. 3, pp. 346-352.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Turan $n$-dimensional extremum problem of finding the value of $A_n(hB^n)$ which is equal to the maximum zero Fourier coefficient $\widehat f_0$ of periodic functions $f$ supported in the Euclidean ball $hB^n$ of radius $h$, having nonnegative Fourier coefficients, and satisfying the condition $f(0)=1$. This problem originates from applications to number theory. The case of $A_1([-h,h])$ was studied by S. B. Stechkin. For $A_n(hB^n)$ we obtain an asymptotic series as $h\to0$ whose leading term is found by solving an $n$-dimensional extremum problem for entire functions of exponential type.
@article{MZM_2001_69_3_a3,
     author = {D. V. Gorbachev},
     title = {Extremum {Problem} for {Periodic} {Functions} {Supported} in a {Ball}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {346--352},
     publisher = {mathdoc},
     volume = {69},
     number = {3},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_69_3_a3/}
}
TY  - JOUR
AU  - D. V. Gorbachev
TI  - Extremum Problem for Periodic Functions Supported in a Ball
JO  - Matematičeskie zametki
PY  - 2001
SP  - 346
EP  - 352
VL  - 69
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_69_3_a3/
LA  - ru
ID  - MZM_2001_69_3_a3
ER  - 
%0 Journal Article
%A D. V. Gorbachev
%T Extremum Problem for Periodic Functions Supported in a Ball
%J Matematičeskie zametki
%D 2001
%P 346-352
%V 69
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_69_3_a3/
%G ru
%F MZM_2001_69_3_a3
D. V. Gorbachev. Extremum Problem for Periodic Functions Supported in a Ball. Matematičeskie zametki, Tome 69 (2001) no. 3, pp. 346-352. http://geodesic.mathdoc.fr/item/MZM_2001_69_3_a3/

[1] Stechkin S. B., “Odna ekstremalnaya zadacha dlya trigonometricheskikh ryadov s neotritsatelnymi koeffitsientami”, Izbrannye trudy. Matematika, Nauka, M., 1998, 244–245

[2] Andreev N. N., “Ekstremalnye zadachi dlya periodicheskikh funktsii s malym nositelem”, Vestn. MGU. Ser. 1. Matem., mekh., 1997, no. 1, 29–32 | MR | Zbl

[3] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974 | Zbl

[4] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977

[5] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, T. 2, Nauka, M., 1966

[6] Akhiezer N. I., Lektsii po teorii approksimatsii, Nauka, M., 1965

[7] Ghanem R. B., Frappier C., “Explicit quadrature formulae for entire functions of exponential type”, J. Approx. Th., 92 (1998), 267–279 | DOI | MR | Zbl