Two Criteria for Nonsimplicity of a Group Possessing a Strongly Embedded Subgroup and a Finite Involution
Matematičeskie zametki, Tome 69 (2001) no. 3, pp. 443-453.

Voir la notice de l'article provenant de la source Math-Net.Ru

A proper subgroup $H$ of a group $G$ is said to be strongly embedded if $2\in\pi (H)$ and $2\notin\pi(H\cap H^g)$ ($\forall g\in G\setminus H$). An involution $i$ of $G$ is said to be finite if $|ii^g|\infty$ ($\forall g\in G$). As is known, the structure of a (locally) finite group possessing a strongly embedded subgroup is determined by the theorems of Burnside and Brauer–Suzuki, provided that the Sylow 2-subgroup contains a unique involution. In this paper, sufficient conditions for the equality $m_2(G)=1$ are established, and two analogs of the Burnside and Brauer–Suzuki theorems for infinite groups $G$ possessing a strongly embedded subgroup and a finite involution are given.
@article{MZM_2001_69_3_a11,
     author = {A. I. Sozutov},
     title = {Two {Criteria} for {Nonsimplicity} of a {Group} {Possessing} a {Strongly} {Embedded} {Subgroup} and a {Finite} {Involution}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {443--453},
     publisher = {mathdoc},
     volume = {69},
     number = {3},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_69_3_a11/}
}
TY  - JOUR
AU  - A. I. Sozutov
TI  - Two Criteria for Nonsimplicity of a Group Possessing a Strongly Embedded Subgroup and a Finite Involution
JO  - Matematičeskie zametki
PY  - 2001
SP  - 443
EP  - 453
VL  - 69
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_69_3_a11/
LA  - ru
ID  - MZM_2001_69_3_a11
ER  - 
%0 Journal Article
%A A. I. Sozutov
%T Two Criteria for Nonsimplicity of a Group Possessing a Strongly Embedded Subgroup and a Finite Involution
%J Matematičeskie zametki
%D 2001
%P 443-453
%V 69
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_69_3_a11/
%G ru
%F MZM_2001_69_3_a11
A. I. Sozutov. Two Criteria for Nonsimplicity of a Group Possessing a Strongly Embedded Subgroup and a Finite Involution. Matematičeskie zametki, Tome 69 (2001) no. 3, pp. 443-453. http://geodesic.mathdoc.fr/item/MZM_2001_69_3_a11/

[1] Izmailov A. N., Shunkov V. P., “Dva priznaka neprostoty gruppy s beskonechno izolirovannoi podgruppoi”, Algebra i logika, 21:6 (1982) | MR

[2] Busarkin V. M., “O $2$-izolirovannykh podgruppakh”, Matem. zametki, 3:5 (1968), 497–501 | MR | Zbl

[3] Gorenstein D., Konechnye prostye gruppy, Mir, M., 1985 | Zbl

[4] Brauer R., Suzuki M., “On finite groups of even order whose $2$-Sylow group is a quaternion group”, Proc. Nat. Acad. Sci. USA, 45:12 (1959) | DOI

[5] Sozutov A. I., “O nekotorykh beskonechnykh gruppakh s silno vlozhennoi podgruppoi”, Algebra i logika (to appear)

[6] Sozutov A. I., Suchkov N. M., O nekotorykh dvazhdy tranzitivnykh gruppakh, Preprint No. 17, IVM SO RAN, 1998

[7] Sozutov A. I., Suchkov N. M., “O nekotorykh beskonechnykh kratno tranzitivnykh gruppakh”, Mezhdunarod. algebraich. seminar, posvyaschennyi 70-letiyu kafedry vysshei algebry MGU, Tez. dokl. (10–12 fevralya 1999 g.), M., 1999, 52

[8] Sozutov A. I., Suchkov N. M., O beskonechnykh $Z$-gruppakh s zadannymi stabilizatorami tochek, Dep. VINITI No. 700–V99 ot 09.03.99, Krasnoyar. gos. arkhit.-stroit. akad., Krasnoyarsk, 1999; ВИНИТИ, М.

[9] Mazurov V. D., “O periodicheskikh gruppakh s abelevymi tsentralizatorami involyutsii”, Algebra i logika (to appear)

[10] Shunkov V. P., $Mp$-gruppy, Nauka, M., 1990 | Zbl

[11] Belyaev V. V., “Gruppy s pochti regulyarnoi involyutsiei”, Algebra i logika, 26:5 (1987), 531–535 | MR

[12] Shunkov V. P., O vlozhenii primarnykh elementov v gruppe, VO “Nauka”, Novosibirsk, 1992 | Zbl

[13] Kholl M., Teoriya grupp, IL, M., 1962

[14] Blackburn N., “Some remarks on Černikov $p$-groups, III”, J. Math., 6 (1962), 421–433 | MR | Zbl

[15] Kargapolov M. I., Merzlyakov Yu. I., Osnovy teorii grupp, Nauka, M., 1977 | Zbl

[16] Starostin A. I., “O gruppakh Frobeniusa”, Ukr. matem. zh., 23:5 (1971), 629–639 | MR | Zbl

[17] Busarkin V. M., Gorchakov Yu. M., Konechnye rasscheplyaemye gruppy, Nauka, M., 1968

[18] Kurosh A. G., Teoriya grupp, Nauka, M., 1967 | Zbl