Two Criteria for Nonsimplicity of a Group Possessing a Strongly Embedded Subgroup and a Finite Involution
Matematičeskie zametki, Tome 69 (2001) no. 3, pp. 443-453

Voir la notice de l'article provenant de la source Math-Net.Ru

A proper subgroup $H$ of a group $G$ is said to be strongly embedded if $2\in\pi (H)$ and $2\notin\pi(H\cap H^g)$ ($\forall g\in G\setminus H$). An involution $i$ of $G$ is said to be finite if $|ii^g|\infty$ ($\forall g\in G$). As is known, the structure of a (locally) finite group possessing a strongly embedded subgroup is determined by the theorems of Burnside and Brauer–Suzuki, provided that the Sylow 2-subgroup contains a unique involution. In this paper, sufficient conditions for the equality $m_2(G)=1$ are established, and two analogs of the Burnside and Brauer–Suzuki theorems for infinite groups $G$ possessing a strongly embedded subgroup and a finite involution are given.
@article{MZM_2001_69_3_a11,
     author = {A. I. Sozutov},
     title = {Two {Criteria} for {Nonsimplicity} of a {Group} {Possessing} a {Strongly} {Embedded} {Subgroup} and a {Finite} {Involution}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {443--453},
     publisher = {mathdoc},
     volume = {69},
     number = {3},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_69_3_a11/}
}
TY  - JOUR
AU  - A. I. Sozutov
TI  - Two Criteria for Nonsimplicity of a Group Possessing a Strongly Embedded Subgroup and a Finite Involution
JO  - Matematičeskie zametki
PY  - 2001
SP  - 443
EP  - 453
VL  - 69
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_69_3_a11/
LA  - ru
ID  - MZM_2001_69_3_a11
ER  - 
%0 Journal Article
%A A. I. Sozutov
%T Two Criteria for Nonsimplicity of a Group Possessing a Strongly Embedded Subgroup and a Finite Involution
%J Matematičeskie zametki
%D 2001
%P 443-453
%V 69
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_69_3_a11/
%G ru
%F MZM_2001_69_3_a11
A. I. Sozutov. Two Criteria for Nonsimplicity of a Group Possessing a Strongly Embedded Subgroup and a Finite Involution. Matematičeskie zametki, Tome 69 (2001) no. 3, pp. 443-453. http://geodesic.mathdoc.fr/item/MZM_2001_69_3_a11/