Trace Formula for Sturm--Liouville Operators with Singular Potentials
Matematičeskie zametki, Tome 69 (2001) no. 3, pp. 427-442
Voir la notice de l'article provenant de la source Math-Net.Ru
Suppose that $u(x)$ is a function of bounded variation on the closed interval $[0,\pi]$, continuous at the endpoints of this interval. Then the Sturm–Liouville operator $Sy=-y''+q(x)$ with Dirichlet boundary conditions and potential $q(x)=u'(x)$ is well defined. (The above relation is understood in the sense of distributions.) In the paper, we prove the trace formula
$$
\sum_{k=1}^\infty(\lambda_k^2-k^2+b_{2k})
=-\frac 18\sum h_j^2,
$$
where the $\lambda_k$ are the eigenvalues of $S$ and $h_j$ are the jumps of the function $u(x)$. Moreover, in the case of local continuity of $q(x)$ at the points 0 and $\pi$ the series $\sum_{k=1}^\infty(\lambda_k-k^2)$ is summed by the mean-value method, and its sum is equal to
$$
-\frac{(q(0)+q(\pi))}4-\frac 18\sum h_j^2.
$$
@article{MZM_2001_69_3_a10,
author = {A. M. Savchuk and A. A. Shkalikov},
title = {Trace {Formula} for {Sturm--Liouville} {Operators} with {Singular} {Potentials}},
journal = {Matemati\v{c}eskie zametki},
pages = {427--442},
publisher = {mathdoc},
volume = {69},
number = {3},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2001_69_3_a10/}
}
TY - JOUR AU - A. M. Savchuk AU - A. A. Shkalikov TI - Trace Formula for Sturm--Liouville Operators with Singular Potentials JO - Matematičeskie zametki PY - 2001 SP - 427 EP - 442 VL - 69 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2001_69_3_a10/ LA - ru ID - MZM_2001_69_3_a10 ER -
A. M. Savchuk; A. A. Shkalikov. Trace Formula for Sturm--Liouville Operators with Singular Potentials. Matematičeskie zametki, Tome 69 (2001) no. 3, pp. 427-442. http://geodesic.mathdoc.fr/item/MZM_2001_69_3_a10/