Trace Formula for Sturm--Liouville Operators with Singular Potentials
Matematičeskie zametki, Tome 69 (2001) no. 3, pp. 427-442.

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose that $u(x)$ is a function of bounded variation on the closed interval $[0,\pi]$, continuous at the endpoints of this interval. Then the Sturm–Liouville operator $Sy=-y''+q(x)$ with Dirichlet boundary conditions and potential $q(x)=u'(x)$ is well defined. (The above relation is understood in the sense of distributions.) In the paper, we prove the trace formula $$ \sum_{k=1}^\infty(\lambda_k^2-k^2+b_{2k}) =-\frac 18\sum h_j^2, $$ where the $\lambda_k$ are the eigenvalues of $S$ and $h_j$ are the jumps of the function $u(x)$. Moreover, in the case of local continuity of $q(x)$ at the points 0 and $\pi$ the series $\sum_{k=1}^\infty(\lambda_k-k^2)$ is summed by the mean-value method, and its sum is equal to $$ -\frac{(q(0)+q(\pi))}4-\frac 18\sum h_j^2. $$
@article{MZM_2001_69_3_a10,
     author = {A. M. Savchuk and A. A. Shkalikov},
     title = {Trace {Formula} for {Sturm--Liouville} {Operators} with {Singular} {Potentials}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {427--442},
     publisher = {mathdoc},
     volume = {69},
     number = {3},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_69_3_a10/}
}
TY  - JOUR
AU  - A. M. Savchuk
AU  - A. A. Shkalikov
TI  - Trace Formula for Sturm--Liouville Operators with Singular Potentials
JO  - Matematičeskie zametki
PY  - 2001
SP  - 427
EP  - 442
VL  - 69
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_69_3_a10/
LA  - ru
ID  - MZM_2001_69_3_a10
ER  - 
%0 Journal Article
%A A. M. Savchuk
%A A. A. Shkalikov
%T Trace Formula for Sturm--Liouville Operators with Singular Potentials
%J Matematičeskie zametki
%D 2001
%P 427-442
%V 69
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_69_3_a10/
%G ru
%F MZM_2001_69_3_a10
A. M. Savchuk; A. A. Shkalikov. Trace Formula for Sturm--Liouville Operators with Singular Potentials. Matematičeskie zametki, Tome 69 (2001) no. 3, pp. 427-442. http://geodesic.mathdoc.fr/item/MZM_2001_69_3_a10/

[1] Gelfand I. M., Levitan B. M., “Ob odnom prostom tozhdestve dlya sobstvennykh znachenii differentsialnogo operatora vtorogo poryadka”, Dokl. AN SSSR, 88:4 (1953), 593–596 | MR | Zbl

[2] Dikii L. A., “Ob odnoi formule Gelfanda–Levitana”, UMN, 8:2 (1953), 119–123 | MR | Zbl

[3] Dikii L. A., “Dzeta-funktsiya obyknovennogo differentsialnogo uravneniya na otrezke”, Izv. AN SSSR. Ser. matem., 19:4 (1955), 187–200 | MR | Zbl

[4] Krein M. G., “Ob opredelitelyakh vozmuscheniya i formule sledov dlya unitarnykh i samosopryazhennykh operatorov”, Dokl. AN SSSR, 144:2 (1962), 268–271 | MR | Zbl

[5] Levitan B. M., “Vychislenie regulyarizovannogo sleda dlya operatora Shturma–Liuvillya”, UMN, 19:1 (1964), 161–165 | MR | Zbl

[6] Shevchenko R. F., “Regulyarizatsiya sleda obyknovennogo differentsialnogo operatora”, Vestn. MGU, 1965, no. 6, 28–36 | MR | Zbl

[7] Sadovnichii V. A., “O slede raznosti dvukh obyknovennykh differentsialnykh operatorov vysshikh poryadkov”, Differents. uravneniya, 2:12 (1966), 1611–1624 | MR | Zbl

[8] Sadovnichii V. A., “O tozhdestvakh dlya sobstvennykh znachenii sistemy Diraka i nekotorykh drugikh sistem vysshego poryadka”, Vestn. MGU, 1967, no. 3, 37–47

[9] Sadovnichii V. A., “O sledakh obyknovennykh differentsialnykh operatorov vysshikh poryadkov”, Matem. sb., 72:2 (1967), 293–317 | MR

[10] Lidskii V. B., Sadovnichii V. A., “Regulyarizovannye summy kornei odnogo klassa tselykh funktsii”, Dokl. AN SSSR, 176:2 (1967), 259–262 | MR | Zbl

[11] Guseinov G. S., Levitan B. M., “O formulakh sledov dlya operatorov Shturma–Liuvillya”, Vestn. MGU. Ser. 1. Matem., mekh., 1978, no. 1, 40–49 | MR | Zbl

[12] Sadovnichii V. A., Dubrovskii V. V., “O nekotorykh sootnosheniyakh dlya sobstvennykh chisel diskretnykh operatorov. Formuly sledov dlya differentsialnykh operatorov v chastnykh proizvodnykh”, Differents. uravneniya, 13:11 (1977), 2034–2042

[13] Marchenko M. A., Operatory Shturma–Liuvillya i ikh prilozheniya, Naukova dumka, Kiev, 1977

[14] Dubrovskii V. V., “Regulyarizovannyi sled operatora Shturma–Liuvillya”, Differents. uravneniya, 16:6 (1980), 1127–1129 | MR | Zbl

[15] Lyubishkin V. A., Podolskii V. E., “O summiruemosti regulyarizovannykh sledov differentsialnykh operatorov”, Matem. zametki, 54:2 (1993), 33–38 | MR | Zbl

[16] Papanicolaou V. G., “Trace formulas and the behaviour of large eigenvalues”, SIAM J. Math. Anal., 26:1 (1995), 218–237 | DOI | MR | Zbl

[17] Sadovnichii V. A., Lyubishkin V. A., “Formuly sledov i teoriya vozmuschenii”, Dokl. AN SSSR, 300:5 (1988), 1064–1066 | MR

[18] Lax P. D., “Trace formulas for the Schroedinger operator”, Comm. Pure Appl. Math., 47:4 (1994), 503–512 | DOI | MR | Zbl

[19] Gesztesy F., Holden H., Simon B., Zhao Z., “Trace formulae and inverse spectral theory for Schroedinger operators”, Bull. Amer. Math. Soc., 29:2 (1993), 250–255 | DOI | MR | Zbl

[20] Vinokurov V. A., Sadovnichii V. A., “Sobstvennoe znachenie i sled operatora Shturma–Liuvillya kak differentsiruemye funktsii summiruemogo potentsiala”, Dokl. RAN, 365:3 (1999), 295–297 | MR | Zbl

[21] Savchuk A. M., Shkalikov A. A., “Operatory Shturma–Liuvillya s singulyarnymi potentsialami”, Matem. zametki, 66:6 (1999), 897–912 | MR | Zbl

[22] Savchuk A. M., “O sobstvennykh znacheniyakh i sobstvennykh funktsiyakh operatora Shturma–Liuvillya s singulyarnym potentsialom”, Matem. zametki, 69:2 (2001), 277–285 | MR | Zbl

[23] Zigmund A., Trigonometricheskie ryady, Mir, M., 1965

[24] Savchuk A. M., “Regulyarizovannyi sled pervogo poryadka operatora Shturma–Liuvillya s $\delta $-potentsialom”, UMN, 2001 (to appear)

[25] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | Zbl

[26] Atkinson F., Diskretnye i nepreryvnye granichnye zadachi, Mir, M., 1968 | Zbl

[27] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965

[28] Khardi G., Raskhodyaschiesya ryady, M., 1951