Trace Formula for Sturm--Liouville Operators with Singular Potentials
Matematičeskie zametki, Tome 69 (2001) no. 3, pp. 427-442

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose that $u(x)$ is a function of bounded variation on the closed interval $[0,\pi]$, continuous at the endpoints of this interval. Then the Sturm–Liouville operator $Sy=-y''+q(x)$ with Dirichlet boundary conditions and potential $q(x)=u'(x)$ is well defined. (The above relation is understood in the sense of distributions.) In the paper, we prove the trace formula $$ \sum_{k=1}^\infty(\lambda_k^2-k^2+b_{2k}) =-\frac 18\sum h_j^2, $$ where the $\lambda_k$ are the eigenvalues of $S$ and $h_j$ are the jumps of the function $u(x)$. Moreover, in the case of local continuity of $q(x)$ at the points 0 and $\pi$ the series $\sum_{k=1}^\infty(\lambda_k-k^2)$ is summed by the mean-value method, and its sum is equal to $$ -\frac{(q(0)+q(\pi))}4-\frac 18\sum h_j^2. $$
@article{MZM_2001_69_3_a10,
     author = {A. M. Savchuk and A. A. Shkalikov},
     title = {Trace {Formula} for {Sturm--Liouville} {Operators} with {Singular} {Potentials}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {427--442},
     publisher = {mathdoc},
     volume = {69},
     number = {3},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_69_3_a10/}
}
TY  - JOUR
AU  - A. M. Savchuk
AU  - A. A. Shkalikov
TI  - Trace Formula for Sturm--Liouville Operators with Singular Potentials
JO  - Matematičeskie zametki
PY  - 2001
SP  - 427
EP  - 442
VL  - 69
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_69_3_a10/
LA  - ru
ID  - MZM_2001_69_3_a10
ER  - 
%0 Journal Article
%A A. M. Savchuk
%A A. A. Shkalikov
%T Trace Formula for Sturm--Liouville Operators with Singular Potentials
%J Matematičeskie zametki
%D 2001
%P 427-442
%V 69
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_69_3_a10/
%G ru
%F MZM_2001_69_3_a10
A. M. Savchuk; A. A. Shkalikov. Trace Formula for Sturm--Liouville Operators with Singular Potentials. Matematičeskie zametki, Tome 69 (2001) no. 3, pp. 427-442. http://geodesic.mathdoc.fr/item/MZM_2001_69_3_a10/