The Banach--Mazur Theorem for Spaces with Asymmetric Norm
Matematičeskie zametki, Tome 69 (2001) no. 3, pp. 329-337
Voir la notice de l'article provenant de la source Math-Net.Ru
We establish an analog of the Banach–Mazur theorem for real separable linear spaces with asymmetric norm: every such space can be linearly and isometrically embedded in the space of continuous functions $f$ on the interval $[0,1]$ equipped with the asymmetric norm $\|f|=\max\{f(t)\colon t\in[0,1]\}$. This assertion is used to obtain nontrivial representations of an arbitrary convex closed body $M\subset\mathbb R^n$ , an arbitrary compact set $K\subset\mathbb R^n$, and an arbitrary continuous function $F\colon K\to\mathbb R$.
@article{MZM_2001_69_3_a1,
author = {P. A. Borodin},
title = {The {Banach--Mazur} {Theorem} for {Spaces} with {Asymmetric} {Norm}},
journal = {Matemati\v{c}eskie zametki},
pages = {329--337},
publisher = {mathdoc},
volume = {69},
number = {3},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2001_69_3_a1/}
}
P. A. Borodin. The Banach--Mazur Theorem for Spaces with Asymmetric Norm. Matematičeskie zametki, Tome 69 (2001) no. 3, pp. 329-337. http://geodesic.mathdoc.fr/item/MZM_2001_69_3_a1/