The Banach--Mazur Theorem for Spaces with Asymmetric Norm
Matematičeskie zametki, Tome 69 (2001) no. 3, pp. 329-337.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish an analog of the Banach–Mazur theorem for real separable linear spaces with asymmetric norm: every such space can be linearly and isometrically embedded in the space of continuous functions $f$ on the interval $[0,1]$ equipped with the asymmetric norm $\|f|=\max\{f(t)\colon t\in[0,1]\}$. This assertion is used to obtain nontrivial representations of an arbitrary convex closed body $M\subset\mathbb R^n$ , an arbitrary compact set $K\subset\mathbb R^n$, and an arbitrary continuous function $F\colon K\to\mathbb R$.
@article{MZM_2001_69_3_a1,
     author = {P. A. Borodin},
     title = {The {Banach--Mazur} {Theorem} for {Spaces} with {Asymmetric} {Norm}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {329--337},
     publisher = {mathdoc},
     volume = {69},
     number = {3},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_69_3_a1/}
}
TY  - JOUR
AU  - P. A. Borodin
TI  - The Banach--Mazur Theorem for Spaces with Asymmetric Norm
JO  - Matematičeskie zametki
PY  - 2001
SP  - 329
EP  - 337
VL  - 69
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_69_3_a1/
LA  - ru
ID  - MZM_2001_69_3_a1
ER  - 
%0 Journal Article
%A P. A. Borodin
%T The Banach--Mazur Theorem for Spaces with Asymmetric Norm
%J Matematičeskie zametki
%D 2001
%P 329-337
%V 69
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_69_3_a1/
%G ru
%F MZM_2001_69_3_a1
P. A. Borodin. The Banach--Mazur Theorem for Spaces with Asymmetric Norm. Matematičeskie zametki, Tome 69 (2001) no. 3, pp. 329-337. http://geodesic.mathdoc.fr/item/MZM_2001_69_3_a1/

[1] Banakh S., Kurs funktsionalnogo analizu, Kiiv, 1948

[2] Krein M. G., Nudelman A. A., Problema momentov Markova i ekstremalnye zadachi, Nauka, M., 1973

[3] Dolzhenko E. P., Sevastyanov E. A., “Approksimatsii so znakochuvstvitelnym vesom”, Izv. RAN. Ser. matem., 62:6 (1998), 59–102 ; 63:3 (1999), 77–118 | MR | Zbl | MR | Zbl

[4] Alimov A. R., Approksimativnye svoistva mnozhestv v lineinykh normirovannykh prostranstvakh s nesimmetrichnoi sferoi, Diss. ... k. f.-m. n., MGU, M., 1997

[5] Ramazanov A.-R. K., Polinomialnaya i ratsionalnaya approksimatsii otnositelno znakochuvstvitelnykh vesov i $\Phi $-metrik Orlicha, Diss. ... d. f.-m. n., Makhachkala, 1998 | Zbl

[6] Kozko A. I., Ekstremalnye zadachi v prostranstvakh s nesimmetrichnoi normoi., Diss. ... k. f.-m. n., MGU, M., 1998

[7] Dolzhenko E. P., “Obzor rezultatov po teorii znakochuvstvitelnykh approksimatsii”, Teoriya funktsii, ee prilozheniya i smezhnye voprosy, Materialy Vserossiiskoi shkoly-konferentsii, posvyaschennoi 130-letiyu so dnya rozhd. D. F. Egorova, Kaz. matem. obsch-vo, Kazan, 1999, 83–86

[8] Lyusternik L. A., Sobolev V. I., Kratkii kurs funktsionalnogo analiza, Nauka, M., 1982

[9] Leikhtveis K., Vypuklye mnozhestva, Nauka, M., 1985