Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2001_69_2_a9, author = {P. Del Moral and M. Doisy}, title = {On {Applications} of {Maslov} {Optimization} {Theory}}, journal = {Matemati\v{c}eskie zametki}, pages = {262--276}, publisher = {mathdoc}, volume = {69}, number = {2}, year = {2001}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2001_69_2_a9/} }
P. Del Moral; M. Doisy. On Applications of Maslov Optimization Theory. Matematičeskie zametki, Tome 69 (2001) no. 2, pp. 262-276. http://geodesic.mathdoc.fr/item/MZM_2001_69_2_a9/
[1] Del Moral P., Doisy M., “Maslov Idempotent Probability Calculus. I; II”, Teoriya veroyatnostei i ee primenenie, 43:4 (1998), 735–751 ; 44:2 (1999), 384–400 | Zbl | Zbl
[2] Litvinov G., Maslov V. P., Correspondence principle for idempotent calculus and some computer applications, IHES-M-95-33, Institut des Hautes Études Scientifiques, Paris, 1995; Idempotency, ed. J. Gunawardena, Cambridge University Press, 1998, 420–443 | MR | Zbl
[3] Akian M., Quadrat J. P., Viot M., “Bellman Processes”, $11$-eme Conférence Internationale sur l'Analyse et l'Optimisation des Systèmes, École des Mines Sophia-Antipolis (France, 15–16–17 Juin 1994), Lecture Notes in Control and Information Sciences, 199, Springer-Verlag | Zbl
[4] Del Moral P., “Maslov Optimization Theory: Optimality versus Randomness”, Idempotency Analysis and its Applications, eds. V. N. Kolokoltsov, V. P. Maslov, Kluwer Academic Publishers, 1997
[5] Kolokoltsov V. N., Maslov V. P., “Idempotentnyi analiz kak apparat teorii upravleniya i optimalnogo sinteza”, Funktsionalnyi analiz i ego prilozheniya, 23:1 (1989), 1–14 ; “II”, Функциональный анализ и его приложения, 23:4, 53–62 ; English transl. in Functional Anal. Appl., 23 (1989) | MR | MR | Zbl
[6] Kolokoltsov V. N., Maslov V. P., “Obschii vid endomorfizmov v prostranstve nepreryvnykh funktsii so znacheniem v chislovom kommutativnom polukoltse (s operatsiei $\oplus =\max $)”, Dokl. AN SSSR, 295:2 (1987), 283–287
[7] Maslov V. P., Méthodes opératorielles, Mir, M., 1987
[8] Maslov V. P., “Quasilinear systems which are linear in some semimoduli”, Congrès international sur les problèmes hyperboliques (13–17 Janvier 1986, Saint Etienne, France)
[9] Maslov V. P., Samborskii S. N., Idempotent Analysis, Advances in Soviet Mathematics, 13, Amer. Math. Soc., Providence, 1992
[10] Trouvé A., Parallélisation massive du recuit simulé, Thèse de Doctorat, Université Paris XI, Janvier 1993
[11] P. I. Dudnikov, S. N. Samborskii, Endomorfizmy polumodulya nad polukoltsom s idempotentnoi operatsiei, Preprint No. 87-48, Institut matematiki AN USSR, Kiev, 1987
[12] Kolokoltsov V. N., “Polukoltsevye analogi lineinoi ekvivalentnosti prostranstv”, Vsesoyuznaya shkola “Optimalnoe upravlenie, geometriya i analiz” (Kemerovo), 1988, 30
[13] Meyn S. P., Tweedie R. L., Markov Chains and Stochastic Stability, Springer-Verlag, 1993
[14] Nussbaum R. D., “Convergence of iterates of a nonlinear operator arising in statistical mechanics”, Nonlinearity, 4, U.K, 1991, 1223–1240 | MR | Zbl
[15] Bacelli F., Cohen G., Olsder G. J., Quadrat J. P., Synchronization and Linearity, An Algebra for Discrete Event Systems, John Wiley and Sons Publ., 1992
[16] Bott R., Mayberry J. P., “Matrices and trees”, Economics Activity Analysis, John Wiley and Sons Publ., New York, 1954
[17] Freidlin M. I., Wentzell A. D., Random Perturbations of Dynamical Systems, Springer-Verlag, 1984
[18] Miclo L., “Recuit simulé sans potentiel sur un ensemble fini”, Séminaire de Probabilités, Lecture Notes in Mathematics, 1526, Springer-Verlag, 1992, 47–60
[19] Del Moral P., Miclo L., “On the convergence and the applications of the generalized simulated annealing”, SIAM J. Control Optim., 37:4 (1999), 1222–1250 | DOI | MR | Zbl