The Idempotent Analog of Resolvent Kernels for a Deterministic Optimal Control Problem
Matematičeskie zametki, Tome 69 (2001) no. 2, pp. 235-244.

Voir la notice de l'article provenant de la source Math-Net.Ru

A solution of a discrete Hamilton–Jacobi–Bellman equation is represented in terms of idempotent analysis as a convergent series of integral operators.
@article{MZM_2001_69_2_a7,
     author = {P. Loreti and M. Pedichini},
     title = {The {Idempotent} {Analog} of {Resolvent} {Kernels} for a {Deterministic} {Optimal} {Control} {Problem}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {235--244},
     publisher = {mathdoc},
     volume = {69},
     number = {2},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_69_2_a7/}
}
TY  - JOUR
AU  - P. Loreti
AU  - M. Pedichini
TI  - The Idempotent Analog of Resolvent Kernels for a Deterministic Optimal Control Problem
JO  - Matematičeskie zametki
PY  - 2001
SP  - 235
EP  - 244
VL  - 69
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_69_2_a7/
LA  - ru
ID  - MZM_2001_69_2_a7
ER  - 
%0 Journal Article
%A P. Loreti
%A M. Pedichini
%T The Idempotent Analog of Resolvent Kernels for a Deterministic Optimal Control Problem
%J Matematičeskie zametki
%D 2001
%P 235-244
%V 69
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_69_2_a7/
%G ru
%F MZM_2001_69_2_a7
P. Loreti; M. Pedichini. The Idempotent Analog of Resolvent Kernels for a Deterministic Optimal Control Problem. Matematičeskie zametki, Tome 69 (2001) no. 2, pp. 235-244. http://geodesic.mathdoc.fr/item/MZM_2001_69_2_a7/

[1] Litvinov G. L., Maslov V. P., Correspondence principle for idempotent calculus and some computer applications, Preprint IHES, Bures-sur-Yvette, 1995; Idempotency, ed. Gunawardena J., Cambridge Univ. Press, Cambridge, 1998

[2] Bardi M., Capuzzo Dolcetta I., Optimal Control and Viscosity Solutions of Hamilton–Jacobi–Bellman Equations, Birkhäuser, Boston, 1997 | Zbl

[3] Crandall M. G., Lions P. L., “Viscosity solutions of Hamilton–Jacoby equations”, Trans. Amer. Math. Soc., 277:1 (1983), 1–42 | DOI | MR | Zbl

[4] Capuzzo Dolcetta I., Ishii H., “Approximate solution of the Bellman equation of deterministic control program.”, Appl. Math. Optim., 1984, no. 11, 161–181 | MR

[5] Volterra V., Pérès J., Théorie générale des fonctionelles, Collection de monographies sur la théorie des fonctions. V. 1, Gauthier-Villars, Paris, 1936

[6] Loreti P., “Approssimazione di soluzioni di viscosità dell'equazione di Bellman”, Bollettino della Unione Matematica Italiana, 6:5b (1986), 141–163 | MR