On the Weierstrass Preparation Theorem
Matematičeskie zametki, Tome 69 (2001) no. 2, pp. 194-199.

Voir la notice de l'article provenant de la source Math-Net.Ru

An analytic function of several variables is considered. It is assumed that the function vanishes at some point. According to the Weierstrass preparation theorem, in the neighborhood of this point the function can be represented as a product of a nonvanishing analytic function and a polynomial in one of the variables. The coefficients of the polynomial are analytic functions of the remaining variables. In this paper we construct a method for finding the nonvanishing function and the coefficients of the polynomial in the form of Taylor series whose coefficients are found from an explicit recursive procedure using the derivatives of the initial function. As an application, an explicit formula describing a bifurcation diagram locally up to second-order terms is derived for the case of a double root.
@article{MZM_2001_69_2_a3,
     author = {A. A. Mailybaev and S. S. Grigoryan},
     title = {On the {Weierstrass} {Preparation} {Theorem}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {194--199},
     publisher = {mathdoc},
     volume = {69},
     number = {2},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_69_2_a3/}
}
TY  - JOUR
AU  - A. A. Mailybaev
AU  - S. S. Grigoryan
TI  - On the Weierstrass Preparation Theorem
JO  - Matematičeskie zametki
PY  - 2001
SP  - 194
EP  - 199
VL  - 69
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_69_2_a3/
LA  - ru
ID  - MZM_2001_69_2_a3
ER  - 
%0 Journal Article
%A A. A. Mailybaev
%A S. S. Grigoryan
%T On the Weierstrass Preparation Theorem
%J Matematičeskie zametki
%D 2001
%P 194-199
%V 69
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_69_2_a3/
%G ru
%F MZM_2001_69_2_a3
A. A. Mailybaev; S. S. Grigoryan. On the Weierstrass Preparation Theorem. Matematičeskie zametki, Tome 69 (2001) no. 2, pp. 194-199. http://geodesic.mathdoc.fr/item/MZM_2001_69_2_a3/

[1] Weierstrass K., “Einige auf die Theorie der analytischen Functionen mehrerer Veränderlichen sich beziehende Sätze”, Mathematische Werke, V. II, Mayer und Müller, Berlin, 1895, 135–188

[2] Shabat B. V., Vvedenie v kompleksnyi analiz, Ch. II, Nauka, M., 1976

[3] Mailybaev A. A., “Ob ustoichivosti polinomov, zavisyaschikh ot parametrov”, Izv. RAN. Ser. Teoriya i sistemy upravleniya, 2000, no. 2, 5–12 | MR

[4] Malgranzh B., “Podgotovitelnaya teorema dlya differentsiruemykh funktsii”, Osobennosti differentsiruemykh otobrazhenii, Sbornik statei, Mir, M., 1968, 183–189

[5] Arnold V. I., Kozlov V. V., Neishtadt A. I., Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 3, VINITI, M., 1985

[6] Seiranyan A. P., “Bifurkatsii v odnoparametricheskikh tsirkulyatsionnykh sistemakh”, Izv. RAN. Ser. Mekhanika tverdogo tela, 1994, no. 1, 142–148