Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2001_69_2_a11, author = {N. V. Timofeeva}, title = {Determinantal {Resolution} of the {Universal} {Subscheme} in $\mathscr S\times H_{d+1}$}, journal = {Matemati\v{c}eskie zametki}, pages = {286--294}, publisher = {mathdoc}, volume = {69}, number = {2}, year = {2001}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2001_69_2_a11/} }
N. V. Timofeeva. Determinantal Resolution of the Universal Subscheme in $\mathscr S\times H_{d+1}$. Matematičeskie zametki, Tome 69 (2001) no. 2, pp. 286-294. http://geodesic.mathdoc.fr/item/MZM_2001_69_2_a11/
[1] Fogarty J., “Algebraic families on an algebraic surface. II: The Picard scheme of the punctual Hilbert scheme”, Amer. J. Math., 96 (1974), 660–687 | MR
[2] Matsumura H., Commutative Algebra, Benjamin Co., New York, 1970 | Zbl
[3] Fulton U., Teoriya peresechenii, Mir, M., 1989
[4] Hirschowitz A., “Rank Techniques and Jump Stratifications”, Vector Bundles on Algebraic Varieties, Bombay Colloquium, Univ. Press, Oxford, 1984, 195–205
[5] Burbaki N., Elementy matematiki. Algebra, Gl. Kh. Gomologicheskaya algebra, Nauka, M., 1987
[6] Tikhomirov A. S., “Mnogoobrazie polnykh par nulmernykh podskhem algebraicheskoi poverkhnosti”, Izv. RAN. Ser. matem., 61:6 (1997), 153–180 | MR | Zbl
[7] Khartskhorn R., Algebraicheskaya geometriya, Mir, M., 1981 | Zbl
[8] Tikhomirov A. S., “Gladkaya model punktualnykh skhem Gilberta poverkhnosti”, Tr. MIAN, 208, Nauka, M., 1995, 318–334 | MR | Zbl
[9] Danilov V. I., “Algebraicheskie mnogoobraziya i skhemy”, Itogi nauki i tekhn. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 23, VINITI, M., 1988, 172–302