Determinantal Resolution of the Universal Subscheme in $\mathscr S\times H_{d+1}$
Matematičeskie zametki, Tome 69 (2001) no. 2, pp. 286-294.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a determinantal resolution of singularities for the universal subscheme in $\mathscr S\times H_{d+1}$ and prove that it is isomorphic to the variety of total pairs $\widetilde{\mathscr S\times H_d}$.
@article{MZM_2001_69_2_a11,
     author = {N. V. Timofeeva},
     title = {Determinantal {Resolution} of the {Universal} {Subscheme} in $\mathscr S\times H_{d+1}$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {286--294},
     publisher = {mathdoc},
     volume = {69},
     number = {2},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_69_2_a11/}
}
TY  - JOUR
AU  - N. V. Timofeeva
TI  - Determinantal Resolution of the Universal Subscheme in $\mathscr S\times H_{d+1}$
JO  - Matematičeskie zametki
PY  - 2001
SP  - 286
EP  - 294
VL  - 69
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_69_2_a11/
LA  - ru
ID  - MZM_2001_69_2_a11
ER  - 
%0 Journal Article
%A N. V. Timofeeva
%T Determinantal Resolution of the Universal Subscheme in $\mathscr S\times H_{d+1}$
%J Matematičeskie zametki
%D 2001
%P 286-294
%V 69
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_69_2_a11/
%G ru
%F MZM_2001_69_2_a11
N. V. Timofeeva. Determinantal Resolution of the Universal Subscheme in $\mathscr S\times H_{d+1}$. Matematičeskie zametki, Tome 69 (2001) no. 2, pp. 286-294. http://geodesic.mathdoc.fr/item/MZM_2001_69_2_a11/

[1] Fogarty J., “Algebraic families on an algebraic surface. II: The Picard scheme of the punctual Hilbert scheme”, Amer. J. Math., 96 (1974), 660–687 | MR

[2] Matsumura H., Commutative Algebra, Benjamin Co., New York, 1970 | Zbl

[3] Fulton U., Teoriya peresechenii, Mir, M., 1989

[4] Hirschowitz A., “Rank Techniques and Jump Stratifications”, Vector Bundles on Algebraic Varieties, Bombay Colloquium, Univ. Press, Oxford, 1984, 195–205

[5] Burbaki N., Elementy matematiki. Algebra, Gl. Kh. Gomologicheskaya algebra, Nauka, M., 1987

[6] Tikhomirov A. S., “Mnogoobrazie polnykh par nulmernykh podskhem algebraicheskoi poverkhnosti”, Izv. RAN. Ser. matem., 61:6 (1997), 153–180 | MR | Zbl

[7] Khartskhorn R., Algebraicheskaya geometriya, Mir, M., 1981 | Zbl

[8] Tikhomirov A. S., “Gladkaya model punktualnykh skhem Gilberta poverkhnosti”, Tr. MIAN, 208, Nauka, M., 1995, 318–334 | MR | Zbl

[9] Danilov V. I., “Algebraicheskie mnogoobraziya i skhemy”, Itogi nauki i tekhn. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 23, VINITI, M., 1988, 172–302