Realization of Configurations and the Loewner Ellipsoid
Matematičeskie zametki, Tome 69 (2001) no. 2, pp. 171-180

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that any subset of an $(m-1)$-dimensional sphere of volume larger than $l(m+1)$ of the volume of the entire sphere contains $l+1$ points forming a regular $l$-dimensional simplex. As a corollary, it is obtained that, if the exterior of a given $m$-dimensional filled ellipsoid contains no more than the $1/(m+1)$ fraction of some sphere, then the volume of the ellipsoid is no less than the volume of the corresponding ball. The existence of a pair of points a given spherical distance apart in a set of positive measure is examined.
@article{MZM_2001_69_2_a1,
     author = {S. A. Bogatyi},
     title = {Realization of {Configurations} and the {Loewner} {Ellipsoid}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {171--180},
     publisher = {mathdoc},
     volume = {69},
     number = {2},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_69_2_a1/}
}
TY  - JOUR
AU  - S. A. Bogatyi
TI  - Realization of Configurations and the Loewner Ellipsoid
JO  - Matematičeskie zametki
PY  - 2001
SP  - 171
EP  - 180
VL  - 69
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_69_2_a1/
LA  - ru
ID  - MZM_2001_69_2_a1
ER  - 
%0 Journal Article
%A S. A. Bogatyi
%T Realization of Configurations and the Loewner Ellipsoid
%J Matematičeskie zametki
%D 2001
%P 171-180
%V 69
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_69_2_a1/
%G ru
%F MZM_2001_69_2_a1
S. A. Bogatyi. Realization of Configurations and the Loewner Ellipsoid. Matematičeskie zametki, Tome 69 (2001) no. 2, pp. 171-180. http://geodesic.mathdoc.fr/item/MZM_2001_69_2_a1/