Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2001_69_1_a8, author = {T. N. Fomenko}, title = {On the {Least} {Number} of {Fixed} {Points} of an {Equivariant} {Map}}, journal = {Matemati\v{c}eskie zametki}, pages = {100--112}, publisher = {mathdoc}, volume = {69}, number = {1}, year = {2001}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2001_69_1_a8/} }
T. N. Fomenko. On the Least Number of Fixed Points of an Equivariant Map. Matematičeskie zametki, Tome 69 (2001) no. 1, pp. 100-112. http://geodesic.mathdoc.fr/item/MZM_2001_69_1_a8/
[1] Jiang B., “On the least number of fixed points”, Amer. J. Math., 102:4 (1980), 749–763 | DOI | MR | Zbl
[2] Schirmer H., “A relative Nielsen number”, Pacific J. Math., 122:2 (1986), 459–473 | MR | Zbl
[3] Schirmer H., “Fixed point sets of deformations of pairs of spaces”, Topology Appl., 23 (1986), 193–205 | DOI | MR | Zbl
[4] Schirmer H., “A survey of relative Nielsen fixed point theory”, Contemp. Math., 152 (1993), 291–309 | MR | Zbl
[5] Shi Gen Hua (Shih Ken-Hua), “On the least number of fixed points and Nielsen numbers”, Acta Math. Sinica, 16:2 (1966), 223–232 | Zbl
[6] Zhao Xuezhi, “A relative Nielsen number for the complement”, Lect. Notes in Math., 1411, Springer-Verlag, Berlin–New York, 1989, 189–199
[7] Wilczyn'ski D., “Fixed point free equivariant homotopy classes”, Fund. Math., 123 (1984), 47–59 | MR
[8] Fadell E., Wong P., “On deforming $G$-maps to be fixed point free”, Pacific. J. Math., 132:2 (1988) | MR | Zbl
[9] Wong P., “On the location of fixed points of $G$-deformations”, Topology Appl., 39 (1991), 159–165 | DOI | MR | Zbl
[10] Wong P., “Equivariant Nielsen fixed point theory for $G$-maps”, Pacific J. Math., 150 (1991), 179–200 | MR | Zbl
[11] Wong P., “Equivariant Nielsen fixed point theory and periodic points”, Contemp. Math., 152 (1993), 341–350 | Zbl
[12] Wong P., “Equivariant Nielsen numbers”, Pacific. J. Math., 159:1 (1993), 153–175 | MR
[13] Jiang B., “Lectures on Nielsen fixed point theory”, Contemp. Math., 14 (1982) | Zbl
[14] Brown R. F., The Lefschetz Fixed Point Theorem, Scott, Foresman and Co., Glenview, Ill., 1971