Weak Solvability of the Dirichlet Problem on Stratified Sets
Matematičeskie zametki, Tome 68 (2000) no. 6, pp. 874-886.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Dirichlet problem is posed for an analog of the Beltrami–Laplace operator on sets consisting of manifolds of various dimensions regularly adjacent to one another (stratified sets). A special system of notions permits one to prove analogs of Green's integral identities and the Poincaré inequality for Sobolev type spaces. The weak solvability of the Dirichlet problem for this operator, as well as for an analog of the biharmonic operator, is proved on the basis of the Riesz theorem on the representation of linear functionals.
@article{MZM_2000_68_6_a8,
     author = {O. M. Penkin and E. M. Bogatov},
     title = {Weak {Solvability} of the {Dirichlet} {Problem} on {Stratified} {Sets}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {874--886},
     publisher = {mathdoc},
     volume = {68},
     number = {6},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2000_68_6_a8/}
}
TY  - JOUR
AU  - O. M. Penkin
AU  - E. M. Bogatov
TI  - Weak Solvability of the Dirichlet Problem on Stratified Sets
JO  - Matematičeskie zametki
PY  - 2000
SP  - 874
EP  - 886
VL  - 68
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2000_68_6_a8/
LA  - ru
ID  - MZM_2000_68_6_a8
ER  - 
%0 Journal Article
%A O. M. Penkin
%A E. M. Bogatov
%T Weak Solvability of the Dirichlet Problem on Stratified Sets
%J Matematičeskie zametki
%D 2000
%P 874-886
%V 68
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2000_68_6_a8/
%G ru
%F MZM_2000_68_6_a8
O. M. Penkin; E. M. Bogatov. Weak Solvability of the Dirichlet Problem on Stratified Sets. Matematičeskie zametki, Tome 68 (2000) no. 6, pp. 874-886. http://geodesic.mathdoc.fr/item/MZM_2000_68_6_a8/

[1] Nicaise S., “Estimeés du spectre du laplacian sur un réseau topologique fini”, C. R. Acad. Sci., 303 (1986), 343–346 | MR | Zbl

[2] Pavlov B. S., Faddeev M. D., “Model svobodnykh elektronov i zadacha rasseyaniya”, TMF, 55:2 (1983), 257–269 | MR

[3] Penkin O. M., Pokornyi Yu. V., Provotorova E. N., “Ob odnoi vektornoi kraevoi zadache”, Kraevye zadachi, Sb., Izd-vo PPI, Perm, 1983, 64–70 | MR

[4] Ali Mehmeti F., Nonlinear Waves in Networks, Academie-Verlag, Berlin, 1994

[5] Kopachevskii N. D., Krein S. G., Ngo Zui Kan, Operatornye metody v lineinoi gidrodinamike, Nauka, M., 1989

[6] Zhikov V. V., “Svyaznost i usrednenie. Primery fraktalnoi provodimosti”, Matem. sb., 187:8 (1996), 3–40 | MR | Zbl

[7] Pokornyi Yu. V., Penkin O. M., “O teoremakh sravneniya dlya uravnenii na grafakh”, Differents. uravneniya, 25:7 (1989), 1141–1150 | MR | Zbl

[8] Penkin O. M., “O printsipe maksimuma dlya ellipticheskogo uravneniya na dvumernom kletochnom komplekse”, Dokl. RAN, 352:4 (1997), 462–465 | MR | Zbl

[9] Penkin O. M., Pokornyi Yu. V., “O differentsialnykh neravenstvakh dlya ellipticheskikh uravnenii na slozhnykh mnogoobraziyakh”, Dokl. RAN, 360:4 (1998), 456–458 | MR | Zbl

[10] Penkin O. M., Pokornyi Yu. V., “O nesovmestnykh neravenstvakh dlya ellipticheskikh uravnenii na stratifitsirovannykh mnozhestvakh”, Differents. uravneniya, 34:8 (1998), 1107–1113 | MR

[11] Penkin O. M., Bogatov E. M., Kashkarov Yu. M., “O razreshimosti ellipticheskikh kraevykh zadach na stratifitsirovannykh mnozhestvakh”, Differents. uravneniya, 34:9 (1998), 1289–1290 | MR | Zbl

[12] Bogatov E. M., “O razreshimosti odnoi zadachi lineinoi teorii uprugosti”, Sb. statei aspirantov i studentov matematicheskogo fakulteta VGU, Izd-vo VGU, Voronezh, 1999, 9–15