An Analog of the Cameron--Johnson Theorem for Linear $\mathbb C$-Analytic Equations in Hilbert Space
Matematičeskie zametki, Tome 68 (2000) no. 6, pp. 935-938.

Voir la notice de l'article provenant de la source Math-Net.Ru

The well-known Cameron–Johnson theorem asserts that the equation $\dot x=\mathcal A(t)x$ with a recurrent (Bohr almost periodic) matrix $\mathcal A(t)$ can be reduced by a Lyapunov transformation to the equation $\dot y=\mathcal B(t)y$ with a skew-symmetric matrix $\mathcal B(t)$, provided that all solutions of the equation $\dot x=\mathcal A(t)x$ and of all its limit equations are bounded on the whole line. In the note, a generalization of this result to linear $\mathbb C$-analytic equations in a Hilbert space is presented.
@article{MZM_2000_68_6_a13,
     author = {D. N. Cheban},
     title = {An {Analog} of the {Cameron--Johnson} {Theorem} for {Linear} $\mathbb C${-Analytic} {Equations} in {Hilbert} {Space}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {935--938},
     publisher = {mathdoc},
     volume = {68},
     number = {6},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2000_68_6_a13/}
}
TY  - JOUR
AU  - D. N. Cheban
TI  - An Analog of the Cameron--Johnson Theorem for Linear $\mathbb C$-Analytic Equations in Hilbert Space
JO  - Matematičeskie zametki
PY  - 2000
SP  - 935
EP  - 938
VL  - 68
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2000_68_6_a13/
LA  - ru
ID  - MZM_2000_68_6_a13
ER  - 
%0 Journal Article
%A D. N. Cheban
%T An Analog of the Cameron--Johnson Theorem for Linear $\mathbb C$-Analytic Equations in Hilbert Space
%J Matematičeskie zametki
%D 2000
%P 935-938
%V 68
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2000_68_6_a13/
%G ru
%F MZM_2000_68_6_a13
D. N. Cheban. An Analog of the Cameron--Johnson Theorem for Linear $\mathbb C$-Analytic Equations in Hilbert Space. Matematičeskie zametki, Tome 68 (2000) no. 6, pp. 935-938. http://geodesic.mathdoc.fr/item/MZM_2000_68_6_a13/

[1] Cameron R. H., “Almost periodic properties of bounded solutions of linear differential equations with almost periodic coefficients”, J. Math. Phys., 15 (1936), 73–81 | Zbl

[2] Johnson R. A., “On a Floquet theory for almost periodic, two-dimensional linear systems”, J. Differential Equations, 37 (1980), 184–205 | DOI | MR | Zbl

[3] Koddington E. A., Levinson N., Teoriya obyknovennykh differentsialnykh uravnenii, Mir, M., 1958

[4] Demidovich B. P., Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967

[5] Daletskii Yu. L., Krein M. G., Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nauka, M., 1970

[6] Shvarts L., Analiz, T. 2, Mir, M., 1973

[7] Burbaki N., Topologicheskie vektornye prostranstva, Mir, M., 1959

[8] Rudin U., Funktsionalnyi analiz, Mir, M., 1975

[9] Khalmosh P., Gilbertovo prostranstvo v zadachakh, Mir, M., 1970 | Zbl

[10] Scherbakov B. A., Ustoichivost po Puassonu dvizhenii dinamicheskikh sistem i reshenii differentsialnykh uravnenii, Shtiintsa, Kishinev, 1985