Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2000_68_6_a13, author = {D. N. Cheban}, title = {An {Analog} of the {Cameron--Johnson} {Theorem} for {Linear} $\mathbb C${-Analytic} {Equations} in {Hilbert} {Space}}, journal = {Matemati\v{c}eskie zametki}, pages = {935--938}, publisher = {mathdoc}, volume = {68}, number = {6}, year = {2000}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2000_68_6_a13/} }
TY - JOUR AU - D. N. Cheban TI - An Analog of the Cameron--Johnson Theorem for Linear $\mathbb C$-Analytic Equations in Hilbert Space JO - Matematičeskie zametki PY - 2000 SP - 935 EP - 938 VL - 68 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2000_68_6_a13/ LA - ru ID - MZM_2000_68_6_a13 ER -
D. N. Cheban. An Analog of the Cameron--Johnson Theorem for Linear $\mathbb C$-Analytic Equations in Hilbert Space. Matematičeskie zametki, Tome 68 (2000) no. 6, pp. 935-938. http://geodesic.mathdoc.fr/item/MZM_2000_68_6_a13/
[1] Cameron R. H., “Almost periodic properties of bounded solutions of linear differential equations with almost periodic coefficients”, J. Math. Phys., 15 (1936), 73–81 | Zbl
[2] Johnson R. A., “On a Floquet theory for almost periodic, two-dimensional linear systems”, J. Differential Equations, 37 (1980), 184–205 | DOI | MR | Zbl
[3] Koddington E. A., Levinson N., Teoriya obyknovennykh differentsialnykh uravnenii, Mir, M., 1958
[4] Demidovich B. P., Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967
[5] Daletskii Yu. L., Krein M. G., Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nauka, M., 1970
[6] Shvarts L., Analiz, T. 2, Mir, M., 1973
[7] Burbaki N., Topologicheskie vektornye prostranstva, Mir, M., 1959
[8] Rudin U., Funktsionalnyi analiz, Mir, M., 1975
[9] Khalmosh P., Gilbertovo prostranstvo v zadachakh, Mir, M., 1970 | Zbl
[10] Scherbakov B. A., Ustoichivost po Puassonu dvizhenii dinamicheskikh sistem i reshenii differentsialnykh uravnenii, Shtiintsa, Kishinev, 1985