The Structure of Modules over Hereditary Rings
Matematičeskie zametki, Tome 68 (2000) no. 5, pp. 739-755

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A$ be a bounded hereditary Noetherian prime ring. For an $A$-module $M_A$, we prove that $M$ is a finitely generated projective $A/r(M)$-module if and only if $M$ is a $\pi$-projective finite-dimensional module, and either $M$ is a reduced module or $A$ is a simple Artinian ring. The structure of torsion or mixed $\pi$-projective $A$-modules is completely described.
@article{MZM_2000_68_5_a9,
     author = {A. A. Tuganbaev},
     title = {The {Structure} of {Modules} over {Hereditary} {Rings}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {739--755},
     publisher = {mathdoc},
     volume = {68},
     number = {5},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2000_68_5_a9/}
}
TY  - JOUR
AU  - A. A. Tuganbaev
TI  - The Structure of Modules over Hereditary Rings
JO  - Matematičeskie zametki
PY  - 2000
SP  - 739
EP  - 755
VL  - 68
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2000_68_5_a9/
LA  - ru
ID  - MZM_2000_68_5_a9
ER  - 
%0 Journal Article
%A A. A. Tuganbaev
%T The Structure of Modules over Hereditary Rings
%J Matematičeskie zametki
%D 2000
%P 739-755
%V 68
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2000_68_5_a9/
%G ru
%F MZM_2000_68_5_a9
A. A. Tuganbaev. The Structure of Modules over Hereditary Rings. Matematičeskie zametki, Tome 68 (2000) no. 5, pp. 739-755. http://geodesic.mathdoc.fr/item/MZM_2000_68_5_a9/