On the Difference between the Number of Prime Divisors from Subsets for Consecutive Integers
Matematičeskie zametki, Tome 68 (2000) no. 5, pp. 725-738.

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose that $E_1$, $E_2$ are arbitrary subsets of the set of primes and $g_1(n)$, $g_2(n)$ are additive functions taking integer values such that $g_i(p)=1$, if $p\in E_i$ and $g_i(p)=0$ otherwise, $i=1,2$. Set $$ E_i(x)=\sum_{\substack{p\le x,\\p\in E_i}}\frac 1p,\quad i=1,2. $$ It is proved in this paper that if $R(x)=\max(E_1(x),E_2(x))$, $a\ne0$ is an integer, then $$ \sup_m|\{n:n\le x, g_2(n+a)-g_1(n)=m\}| \ll\frac x{\sqrt{R(x)}}. $$ If, moreover, $E_i(x)\ge T$ for $x\ge x_0$, where $T$ is a sufficiently large constant and $$ |m-(E_2(x)-E_1(x))|\le\mu\sqrt{R(x)}, $$ then there exists a constant $c(\mu,a,T)>0$ such that for $x\ge x_0$ we have $$ \sum_{i=0}^3|\{n:n\le x,g_2(n+a)-g_1(n)=m+i\}|\ge c(\mu,a,T)\frac x{\sqrt{R(x)}}. $$
@article{MZM_2000_68_5_a8,
     author = {N. M. Timofeev and M. B. Khripunova},
     title = {On the {Difference} between the {Number} of {Prime} {Divisors} from {Subsets} for {Consecutive} {Integers}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {725--738},
     publisher = {mathdoc},
     volume = {68},
     number = {5},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2000_68_5_a8/}
}
TY  - JOUR
AU  - N. M. Timofeev
AU  - M. B. Khripunova
TI  - On the Difference between the Number of Prime Divisors from Subsets for Consecutive Integers
JO  - Matematičeskie zametki
PY  - 2000
SP  - 725
EP  - 738
VL  - 68
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2000_68_5_a8/
LA  - ru
ID  - MZM_2000_68_5_a8
ER  - 
%0 Journal Article
%A N. M. Timofeev
%A M. B. Khripunova
%T On the Difference between the Number of Prime Divisors from Subsets for Consecutive Integers
%J Matematičeskie zametki
%D 2000
%P 725-738
%V 68
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2000_68_5_a8/
%G ru
%F MZM_2000_68_5_a8
N. M. Timofeev; M. B. Khripunova. On the Difference between the Number of Prime Divisors from Subsets for Consecutive Integers. Matematičeskie zametki, Tome 68 (2000) no. 5, pp. 725-738. http://geodesic.mathdoc.fr/item/MZM_2000_68_5_a8/

[1] Halász G., “Remarks to paper: Halász G., On the distribution of additive and the mean values of multiplicative arithmetic functions”, Acta Math. Sci. Hungar., 23 (1972), 425–432 | DOI | MR | Zbl

[2] Norton K. K., “On the number of restricted prime factors of an integer, II”, Acta Math., 143 (1979), 9–38 | DOI | MR | Zbl

[3] Erdös P., Pomerance C., Sárközy A., “On locally repeated values of certain arithmetic functions, III”, Proc. Amer. Math. Soc., 101:1 (1987), 1–7 | DOI | MR | Zbl

[4] Timofeev N. M., “O raznosti chisla prostykh delitelei posledovatelnykh chisel”, Matem. zametki, 66:4 (1999), 579–595 | MR

[5] Hildebrand A., “Multiplicative functions at consecutive integers”, Math. Proc. Camb. Phil. Soc., 103 (1988), 389–398 | DOI | MR | Zbl

[6] Halberstam H., Richter H.-E., Sieve Methods, Academic Press, London–New York, 1974 | Zbl