Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2000_68_5_a6, author = {K. V. Rerikh}, title = {General {Approach} to {Integrating} {Invertible} {Dynamical} {Systems} {Defined} by {Transformations} from the {Cremona} group $\operatorname{Cr}(P^n_k)$ of {Birational} {Transformations}}, journal = {Matemati\v{c}eskie zametki}, pages = {699--709}, publisher = {mathdoc}, volume = {68}, number = {5}, year = {2000}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2000_68_5_a6/} }
TY - JOUR AU - K. V. Rerikh TI - General Approach to Integrating Invertible Dynamical Systems Defined by Transformations from the Cremona group $\operatorname{Cr}(P^n_k)$ of Birational Transformations JO - Matematičeskie zametki PY - 2000 SP - 699 EP - 709 VL - 68 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2000_68_5_a6/ LA - ru ID - MZM_2000_68_5_a6 ER -
%0 Journal Article %A K. V. Rerikh %T General Approach to Integrating Invertible Dynamical Systems Defined by Transformations from the Cremona group $\operatorname{Cr}(P^n_k)$ of Birational Transformations %J Matematičeskie zametki %D 2000 %P 699-709 %V 68 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2000_68_5_a6/ %G ru %F MZM_2000_68_5_a6
K. V. Rerikh. General Approach to Integrating Invertible Dynamical Systems Defined by Transformations from the Cremona group $\operatorname{Cr}(P^n_k)$ of Birational Transformations. Matematičeskie zametki, Tome 68 (2000) no. 5, pp. 699-709. http://geodesic.mathdoc.fr/item/MZM_2000_68_5_a6/