@article{MZM_2000_68_5_a5,
author = {S. Yu. Orevkov},
title = {Strong {Positivity} in {Right-Invariant} {Order} on {Braid} {Groups} and {Quasipositivity}},
journal = {Matemati\v{c}eskie zametki},
pages = {692--698},
year = {2000},
volume = {68},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2000_68_5_a5/}
}
S. Yu. Orevkov. Strong Positivity in Right-Invariant Order on Braid Groups and Quasipositivity. Matematičeskie zametki, Tome 68 (2000) no. 5, pp. 692-698. http://geodesic.mathdoc.fr/item/MZM_2000_68_5_a5/
[1] Dehornoy P., “Braid groups and left distributive operations”, Trans. Amer. Math. Soc., 343 (1994), 115–150 | DOI | MR
[2] Dehornoy P., “From large cardinals to braids via distributive algebra”, J. Knot Theory and Its Ramifications, 4 (1995), 33–79 | DOI | MR | Zbl
[3] Dehornoy P., “A fast method of comparing braids”, Adv. in Math., 125 (1997), 200–235 | DOI | MR | Zbl
[4] Fenn R., Greene M. T., Rolfsen D., Rourke C., Wiest B., Ordering the Braid Group, Preprint
[5] Burckel S., “The well-ordering on positive braids”, J. Pure Appl. Algebra, 120 (1997), 1–17 | DOI | MR | Zbl
[6] Laver R., “Braid group actions on left distributive structures and well-orderings in the braid groups”, J. Pure Appl. Algebra, 108 (1996), 81–98 | DOI | MR | Zbl
[7] Wiest B., “Dehornoy's ordering of the braid groups extends the subword ordering”, Pacific J. Math. (to appear)
[8] Rudolph L., “Algebraic functions and closed braids”, Topology, 22 (1983), 191–202 | DOI | MR | Zbl
[9] Rudolph L., “Some knot theory of complex plane curves”, Noeuds, Tresses et Singularités, L'Ens. Math. Mono., 31, 1983, 99–122 | MR | Zbl
[10] Orevkov S. Yu., “Link theory and oval arrangements of real algebraic curves”, Topology (to appear)