Strong Positivity in Right-Invariant Order on Braid Groups and Quasipositivity
Matematičeskie zametki, Tome 68 (2000) no. 5, pp. 692-698.

Voir la notice de l'article provenant de la source Math-Net.Ru

Dehornoy constructed a right invariant order on the braid group $B_n$ uniquely defined by the condition $\beta_0\sigma_i\beta_1>1$, if $\beta_0,\beta_1$ are words in $\sigma_{i+1}^{\pm 1},\dots,\sigma_{n-1}^{\pm 1}$. A braid is called strongly positive if $\alpha\beta\alpha^{-1}>1$ for any $\alpha\in B_n$. In the present paper it is proved that the braid $\beta_0(\sigma_1\sigma_2\dots\sigma_{n-1})(\sigma_{n-1}\sigma_{n-2}\dots\sigma_1)$ is strongly positive if the word $\beta_0$ does not contain $\sigma_1^{\pm 1}$. We also provide a geometric proof of the result by Burckel and Laver that the standard generators of a braid group are strongly positive. Finally, we discuss relations between the right invariant order and quasipositivity.
@article{MZM_2000_68_5_a5,
     author = {S. Yu. Orevkov},
     title = {Strong {Positivity} in {Right-Invariant} {Order} on {Braid} {Groups} and {Quasipositivity}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {692--698},
     publisher = {mathdoc},
     volume = {68},
     number = {5},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2000_68_5_a5/}
}
TY  - JOUR
AU  - S. Yu. Orevkov
TI  - Strong Positivity in Right-Invariant Order on Braid Groups and Quasipositivity
JO  - Matematičeskie zametki
PY  - 2000
SP  - 692
EP  - 698
VL  - 68
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2000_68_5_a5/
LA  - ru
ID  - MZM_2000_68_5_a5
ER  - 
%0 Journal Article
%A S. Yu. Orevkov
%T Strong Positivity in Right-Invariant Order on Braid Groups and Quasipositivity
%J Matematičeskie zametki
%D 2000
%P 692-698
%V 68
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2000_68_5_a5/
%G ru
%F MZM_2000_68_5_a5
S. Yu. Orevkov. Strong Positivity in Right-Invariant Order on Braid Groups and Quasipositivity. Matematičeskie zametki, Tome 68 (2000) no. 5, pp. 692-698. http://geodesic.mathdoc.fr/item/MZM_2000_68_5_a5/

[1] Dehornoy P., “Braid groups and left distributive operations”, Trans. Amer. Math. Soc., 343 (1994), 115–150 | DOI | MR

[2] Dehornoy P., “From large cardinals to braids via distributive algebra”, J. Knot Theory and Its Ramifications, 4 (1995), 33–79 | DOI | MR | Zbl

[3] Dehornoy P., “A fast method of comparing braids”, Adv. in Math., 125 (1997), 200–235 | DOI | MR | Zbl

[4] Fenn R., Greene M. T., Rolfsen D., Rourke C., Wiest B., Ordering the Braid Group, Preprint

[5] Burckel S., “The well-ordering on positive braids”, J. Pure Appl. Algebra, 120 (1997), 1–17 | DOI | MR | Zbl

[6] Laver R., “Braid group actions on left distributive structures and well-orderings in the braid groups”, J. Pure Appl. Algebra, 108 (1996), 81–98 | DOI | MR | Zbl

[7] Wiest B., “Dehornoy's ordering of the braid groups extends the subword ordering”, Pacific J. Math. (to appear)

[8] Rudolph L., “Algebraic functions and closed braids”, Topology, 22 (1983), 191–202 | DOI | MR | Zbl

[9] Rudolph L., “Some knot theory of complex plane curves”, Noeuds, Tresses et Singularités, L'Ens. Math. Mono., 31, 1983, 99–122 | MR | Zbl

[10] Orevkov S. Yu., “Link theory and oval arrangements of real algebraic curves”, Topology (to appear)