Strong Positivity in Right-Invariant Order on Braid Groups and Quasipositivity
Matematičeskie zametki, Tome 68 (2000) no. 5, pp. 692-698
Voir la notice de l'article provenant de la source Math-Net.Ru
Dehornoy constructed a right invariant order on the braid group $B_n$ uniquely defined by the condition $\beta_0\sigma_i\beta_1>1$, if $\beta_0,\beta_1$ are words in $\sigma_{i+1}^{\pm 1},\dots,\sigma_{n-1}^{\pm 1}$. A braid is called strongly positive if $\alpha\beta\alpha^{-1}>1$ for any $\alpha\in B_n$. In the present paper it is proved that the braid $\beta_0(\sigma_1\sigma_2\dots\sigma_{n-1})(\sigma_{n-1}\sigma_{n-2}\dots\sigma_1)$ is strongly positive if the word $\beta_0$ does not contain $\sigma_1^{\pm 1}$. We also provide a geometric proof of the result by Burckel and Laver that the standard generators of a braid group are strongly positive. Finally, we discuss relations between the right invariant order and quasipositivity.
@article{MZM_2000_68_5_a5,
author = {S. Yu. Orevkov},
title = {Strong {Positivity} in {Right-Invariant} {Order} on {Braid} {Groups} and {Quasipositivity}},
journal = {Matemati\v{c}eskie zametki},
pages = {692--698},
publisher = {mathdoc},
volume = {68},
number = {5},
year = {2000},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2000_68_5_a5/}
}
S. Yu. Orevkov. Strong Positivity in Right-Invariant Order on Braid Groups and Quasipositivity. Matematičeskie zametki, Tome 68 (2000) no. 5, pp. 692-698. http://geodesic.mathdoc.fr/item/MZM_2000_68_5_a5/