Three counterexamples in the theory of inertial manifolds
Matematičeskie zametki, Tome 68 (2000) no. 3, pp. 439-447.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_2000_68_3_a12,
     author = {A. V. Romanov},
     title = {Three counterexamples in the theory of inertial manifolds},
     journal = {Matemati\v{c}eskie zametki},
     pages = {439--447},
     publisher = {mathdoc},
     volume = {68},
     number = {3},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2000_68_3_a12/}
}
TY  - JOUR
AU  - A. V. Romanov
TI  - Three counterexamples in the theory of inertial manifolds
JO  - Matematičeskie zametki
PY  - 2000
SP  - 439
EP  - 447
VL  - 68
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2000_68_3_a12/
LA  - ru
ID  - MZM_2000_68_3_a12
ER  - 
%0 Journal Article
%A A. V. Romanov
%T Three counterexamples in the theory of inertial manifolds
%J Matematičeskie zametki
%D 2000
%P 439-447
%V 68
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2000_68_3_a12/
%G ru
%F MZM_2000_68_3_a12
A. V. Romanov. Three counterexamples in the theory of inertial manifolds. Matematičeskie zametki, Tome 68 (2000) no. 3, pp. 439-447. http://geodesic.mathdoc.fr/item/MZM_2000_68_3_a12/

[1] Chueshov I. D., “Globalnye attraktory v nelineinykh zadachakh matematicheskoi fiziki”, UMN, 48:3 (1993), 135–162 | MR | Zbl

[2] Mora X., Sola-Morales J., “Existence and non-existence of finite-dimensional globally attracting invariant manifolds in semilinear damped wave equations”, Dynamics of Infinite Dimensional Systems, Springer, New York, 1987, 187–210 | MR

[3] Hirsch M. W., Pugh C. C., Shub M., Invariant manifolds, Lecture Notes in Math., 583, Springer, New York, 1977 | MR | Zbl

[4] Mallet-Paret J., Sell G. R., Shao Z., “Obstructions to the existence of normally hyperbolic inertial manifolds”, Indiana Univ. Math. J., 42:3 (1993), 1027–1055 | DOI | MR | Zbl

[5] Mallet-Paret J., Sell G. R., “Inertial manifolds for reactions-diffusion equations in higher space dimensions”, J. Amer. Math. Soc., 1:4 (1988), 805–866 | DOI | MR

[6] Romanov A. V., “Tochnye otsenki razmernosti inertsialnykh mnogoobrazii dlya nelineinykh parabolicheskikh uravnenii”, Izv. RAN. Ser. matem., 57:4 (1993), 36–54 | MR | Zbl

[7] Khenri D., Geometricheskaya teoriya polulineinykh parabolicheskikh uravnenii, Mir, M., 1985

[8] Hardy G. H., Wright E. M., An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, Oxford, 1979 | Zbl