Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2000_68_3_a12, author = {A. V. Romanov}, title = {Three counterexamples in the theory of inertial manifolds}, journal = {Matemati\v{c}eskie zametki}, pages = {439--447}, publisher = {mathdoc}, volume = {68}, number = {3}, year = {2000}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2000_68_3_a12/} }
A. V. Romanov. Three counterexamples in the theory of inertial manifolds. Matematičeskie zametki, Tome 68 (2000) no. 3, pp. 439-447. http://geodesic.mathdoc.fr/item/MZM_2000_68_3_a12/
[1] Chueshov I. D., “Globalnye attraktory v nelineinykh zadachakh matematicheskoi fiziki”, UMN, 48:3 (1993), 135–162 | MR | Zbl
[2] Mora X., Sola-Morales J., “Existence and non-existence of finite-dimensional globally attracting invariant manifolds in semilinear damped wave equations”, Dynamics of Infinite Dimensional Systems, Springer, New York, 1987, 187–210 | MR
[3] Hirsch M. W., Pugh C. C., Shub M., Invariant manifolds, Lecture Notes in Math., 583, Springer, New York, 1977 | MR | Zbl
[4] Mallet-Paret J., Sell G. R., Shao Z., “Obstructions to the existence of normally hyperbolic inertial manifolds”, Indiana Univ. Math. J., 42:3 (1993), 1027–1055 | DOI | MR | Zbl
[5] Mallet-Paret J., Sell G. R., “Inertial manifolds for reactions-diffusion equations in higher space dimensions”, J. Amer. Math. Soc., 1:4 (1988), 805–866 | DOI | MR
[6] Romanov A. V., “Tochnye otsenki razmernosti inertsialnykh mnogoobrazii dlya nelineinykh parabolicheskikh uravnenii”, Izv. RAN. Ser. matem., 57:4 (1993), 36–54 | MR | Zbl
[7] Khenri D., Geometricheskaya teoriya polulineinykh parabolicheskikh uravnenii, Mir, M., 1985
[8] Hardy G. H., Wright E. M., An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, Oxford, 1979 | Zbl