Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2000_68_2_a5, author = {I. D. Kan}, title = {Representation of numbers by linear forms}, journal = {Matemati\v{c}eskie zametki}, pages = {210--216}, publisher = {mathdoc}, volume = {68}, number = {2}, year = {2000}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2000_68_2_a5/} }
I. D. Kan. Representation of numbers by linear forms. Matematičeskie zametki, Tome 68 (2000) no. 2, pp. 210-216. http://geodesic.mathdoc.fr/item/MZM_2000_68_2_a5/
[1] Sylvester J. J., “Mathematical questions, with their solutions”, Educational Times, 41 (1884), 21
[2] Johnson S. M., “A linear Diophantine problem”, Canad. J. Math., 12 (1960), 300–398
[3] Shevchenko V. N., Kachestvennye voprosy tselochislennogo programmirovaniya, M., Nauka; M., Fizmatlit, 1995 | Zbl
[4] Brauer A., Shockly J. E., “On a problem of Frobenius”, Angew. Math., 211 (1962), 215–220 | MR | Zbl
[5] Roberts J. B., “Note on linear forms”, Proc. Amer. Math. Soc., 1956, no. 7, 465–469 | DOI | MR | Zbl
[6] Brauer A., “On a problem of partitions”, Amer. J. Math., 64 (1942), 299–312 | DOI | MR | Zbl
[7] Siering E., “Über lineare Formen und ein Problem von Frobenius”, J. Reine Angew. Math., 271 (1974), 177–202 | MR | Zbl
[8] Rödset Ö. J., “On a linear Diophantine problem of Frobenius, II”, J. Reine Angew. Math., 307/308 (1979), 431–440 | MR | Zbl
[9] Kan I. D., Stechkin B. S., Sharkov I. V., “K probleme Frobeniusa trekh argumentov”, Matem. zametki, 62:4 (1997), 626–629 | MR | Zbl
[10] Kan I. D., Rekurrentnye posledovatelnosti i ikh prilozheniya, Diss. ... d. f.-m. n., MGU, M., 1997
[11] Kan I. D., “K probleme Frobeniusa”, Fundament. i prikl. matem., 3:3 (1997), 821–835 | MR | Zbl
[12] Finkelshtein Yu. Yu., “Odnostoronnie nailuchshie priblizheniya i ikh geometricheskaya interpretatsiya”, Ekonomika i matem. metody (Moskva), 28:1 (1992), 130–136 | MR