The group of asynchronous automata and rational homeomorphisms of the Cantor set
Matematičeskie zametki, Tome 67 (2000) no. 5, pp. 680-685.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_2000_67_5_a4,
     author = {R. I. Grigorchuk and V. V. Nekrashevych},
     title = {The group of asynchronous automata and rational homeomorphisms of the {Cantor} set},
     journal = {Matemati\v{c}eskie zametki},
     pages = {680--685},
     publisher = {mathdoc},
     volume = {67},
     number = {5},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2000_67_5_a4/}
}
TY  - JOUR
AU  - R. I. Grigorchuk
AU  - V. V. Nekrashevych
TI  - The group of asynchronous automata and rational homeomorphisms of the Cantor set
JO  - Matematičeskie zametki
PY  - 2000
SP  - 680
EP  - 685
VL  - 67
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2000_67_5_a4/
LA  - ru
ID  - MZM_2000_67_5_a4
ER  - 
%0 Journal Article
%A R. I. Grigorchuk
%A V. V. Nekrashevych
%T The group of asynchronous automata and rational homeomorphisms of the Cantor set
%J Matematičeskie zametki
%D 2000
%P 680-685
%V 67
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2000_67_5_a4/
%G ru
%F MZM_2000_67_5_a4
R. I. Grigorchuk; V. V. Nekrashevych. The group of asynchronous automata and rational homeomorphisms of the Cantor set. Matematičeskie zametki, Tome 67 (2000) no. 5, pp. 680-685. http://geodesic.mathdoc.fr/item/MZM_2000_67_5_a4/

[1] Hořeiš J., “Preobrazovaniya opredelennye konechnymi avtomatami”, Problemy kibernetiki, 9 (1963), 23–26 | MR

[2] Glushkov V. M., “Abstraktnaya teoriya avtomatov”, UMN, 16:5 (1961), 3–62 | MR

[3] Aleshin S. V., “Konechnye avtomaty i problema Bernsaida o periodicheskikh gruppakh”, Matem. zametki, 1972, no. 11, 319–328 | MR | Zbl

[4] Suschanskii V. I., “Periodicheskie $p$-gruppy podstanovok i neogranichennaya problema Bernsaida”, Dokl. AN SSSR, 247:3 (1979), 557–562 | MR

[5] Grigorchuk R. I., “K probleme Bernsaida o periodicheskikh gruppakh”, Funkts. analiz i ego pril., 14:1 (1980), 53–54 | MR | Zbl

[6] Gupta N., Sidki S., “On the Burnside problem for periodic groups”, Math. Z., 1982, no. 182, 385–388

[7] Grigorchuk R. I., “Stepeni rosta konechno-porozhdennykh grupp i teoriya invariantnykh srednikh”, Izv. AN SSSR Ser. matem., 1984, no. 5, 939–985 | MR

[8] Bartholdi L., Grigorchuk R. I., Lie methods in growth of groups and groups of finite width, Preprint, 1998 | Zbl

[9] Bartholdi L., Grigorchuk R. I., On the spectrum of Hecke type operators related to some fractal groups, Preprint, 1999 | Zbl

[10] Grigorchuk R. I., . Zuk A., The lamplighter group as a group generated by a 2-state automaton and its spectrum

[11] Eilenberg S., Automata, Languages and Machines, V. A, Acad. Press, New York–London, 1974 | Zbl

[12] Cannon J. W., Floyd W. I., Parry W. R., “Introductory notes on Richard Thompson groups”, L'Enseignement Mathematique, 42:2 (1996), 215–256 | MR | Zbl

[13] Grigorchuk R. I., Nekrashevich V. V., Suschanskii V. I., Dinamicheskie sistemy, avtomaty i beskonechnye gruppy

[14] de lya Arp R., Grigorchuk R. I., Chekerini-Silberstain T., “Amenabelnost i paradoksalnye razbieniya psevdogrupp i diskretnykh metricheskikh prostranstv”, Tr. MIAN, 224, Nauka, M., 1999, 68–111

[15] Chehata C. G., “An algebraically simple ordered group”, Proc. London Math. Soc., 2 (1952), 183–197 | DOI | MR | Zbl

[16] Kitchens B. P., Symbolic Dynamics, Springer, Berlin, 1998 | Zbl

[17] Bass H., Otero-Espinar M., Rockmore D., Tresser C. P. L., Cyclic renormalization and the automorphism groups of rooted trees, Lecture Notes in Math., 1621, Springer, Berlin, 1995 | Zbl

[18] Buescu J., Stewart I., “Liapunov stability and adding machines”, Erg. Th. and Dynam. Systems, 1995 | MR | Zbl