Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2000_67_5_a4, author = {R. I. Grigorchuk and V. V. Nekrashevych}, title = {The group of asynchronous automata and rational homeomorphisms of the {Cantor} set}, journal = {Matemati\v{c}eskie zametki}, pages = {680--685}, publisher = {mathdoc}, volume = {67}, number = {5}, year = {2000}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2000_67_5_a4/} }
TY - JOUR AU - R. I. Grigorchuk AU - V. V. Nekrashevych TI - The group of asynchronous automata and rational homeomorphisms of the Cantor set JO - Matematičeskie zametki PY - 2000 SP - 680 EP - 685 VL - 67 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2000_67_5_a4/ LA - ru ID - MZM_2000_67_5_a4 ER -
R. I. Grigorchuk; V. V. Nekrashevych. The group of asynchronous automata and rational homeomorphisms of the Cantor set. Matematičeskie zametki, Tome 67 (2000) no. 5, pp. 680-685. http://geodesic.mathdoc.fr/item/MZM_2000_67_5_a4/
[1] Hořeiš J., “Preobrazovaniya opredelennye konechnymi avtomatami”, Problemy kibernetiki, 9 (1963), 23–26 | MR
[2] Glushkov V. M., “Abstraktnaya teoriya avtomatov”, UMN, 16:5 (1961), 3–62 | MR
[3] Aleshin S. V., “Konechnye avtomaty i problema Bernsaida o periodicheskikh gruppakh”, Matem. zametki, 1972, no. 11, 319–328 | MR | Zbl
[4] Suschanskii V. I., “Periodicheskie $p$-gruppy podstanovok i neogranichennaya problema Bernsaida”, Dokl. AN SSSR, 247:3 (1979), 557–562 | MR
[5] Grigorchuk R. I., “K probleme Bernsaida o periodicheskikh gruppakh”, Funkts. analiz i ego pril., 14:1 (1980), 53–54 | MR | Zbl
[6] Gupta N., Sidki S., “On the Burnside problem for periodic groups”, Math. Z., 1982, no. 182, 385–388
[7] Grigorchuk R. I., “Stepeni rosta konechno-porozhdennykh grupp i teoriya invariantnykh srednikh”, Izv. AN SSSR Ser. matem., 1984, no. 5, 939–985 | MR
[8] Bartholdi L., Grigorchuk R. I., Lie methods in growth of groups and groups of finite width, Preprint, 1998 | Zbl
[9] Bartholdi L., Grigorchuk R. I., On the spectrum of Hecke type operators related to some fractal groups, Preprint, 1999 | Zbl
[10] Grigorchuk R. I., . Zuk A., The lamplighter group as a group generated by a 2-state automaton and its spectrum
[11] Eilenberg S., Automata, Languages and Machines, V. A, Acad. Press, New York–London, 1974 | Zbl
[12] Cannon J. W., Floyd W. I., Parry W. R., “Introductory notes on Richard Thompson groups”, L'Enseignement Mathematique, 42:2 (1996), 215–256 | MR | Zbl
[13] Grigorchuk R. I., Nekrashevich V. V., Suschanskii V. I., Dinamicheskie sistemy, avtomaty i beskonechnye gruppy
[14] de lya Arp R., Grigorchuk R. I., Chekerini-Silberstain T., “Amenabelnost i paradoksalnye razbieniya psevdogrupp i diskretnykh metricheskikh prostranstv”, Tr. MIAN, 224, Nauka, M., 1999, 68–111
[15] Chehata C. G., “An algebraically simple ordered group”, Proc. London Math. Soc., 2 (1952), 183–197 | DOI | MR | Zbl
[16] Kitchens B. P., Symbolic Dynamics, Springer, Berlin, 1998 | Zbl
[17] Bass H., Otero-Espinar M., Rockmore D., Tresser C. P. L., Cyclic renormalization and the automorphism groups of rooted trees, Lecture Notes in Math., 1621, Springer, Berlin, 1995 | Zbl
[18] Buescu J., Stewart I., “Liapunov stability and adding machines”, Erg. Th. and Dynam. Systems, 1995 | MR | Zbl