Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2000_67_4_a8, author = {V. O. Manturov}, title = {The bracket semigroup of knots}, journal = {Matemati\v{c}eskie zametki}, pages = {549--562}, publisher = {mathdoc}, volume = {67}, number = {4}, year = {2000}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2000_67_4_a8/} }
V. O. Manturov. The bracket semigroup of knots. Matematičeskie zametki, Tome 67 (2000) no. 4, pp. 549-562. http://geodesic.mathdoc.fr/item/MZM_2000_67_4_a8/
[1] Manturov V. O., “Atomy, vysotnye atomy, khordovye diagrammy i uzly. Perechislenie atomov maloi slozhnosti s ispolzovaniem yazyka {\tt Matematica 3.0}”, Topologicheskie metody v teorii gamiltonovykh sistem, eds. A. T. Fomenko, A. V. Bolsinov, A. A. Shafarevich, 1998, 203–212
[2] Manturov V. O., “Bifurkatsii, atomy i uzly”, Vestn. MGU. Ser. 1. Matem., mekh., 2000, no. 1, 1–7 | MR | Zbl
[3] Prasolov V. V., Sosinskii A. B., Uzly, zatsepleniya, kosy i trekhmernye mnogoobraziya, Izd. MTsNMO, 1997
[4] Fomenko A. T., “The theory of multidimensional integrable hamiltonian systems (with arbitrary many degrees of freedom). Molecular table of all integrable systems with two degrees of freedom”, Adv. Soviet Math., 6 (1991), 1–35 | MR | Zbl
[5] Oshemkov A. A., “Funktsii Morsa na dvumernykh poverkhnostyakh. Kodirovanie osobennostei”, Tr. MIRAN, 205, Nauka, M., 1994, 131–140 | MR | Zbl
[6] Bar-Natan D., “On the Vassiliev knot invariants”, Topology, 34 (1995), 423–475 | DOI | MR