Continuity and boundary behavior of the Carath\'eodory metric
Matematičeskie zametki, Tome 67 (2000) no. 2, pp. 230-240.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_2000_67_2_a6,
     author = {N. M. Nikolov},
     title = {Continuity and boundary behavior of the {Carath\'eodory} metric},
     journal = {Matemati\v{c}eskie zametki},
     pages = {230--240},
     publisher = {mathdoc},
     volume = {67},
     number = {2},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2000_67_2_a6/}
}
TY  - JOUR
AU  - N. M. Nikolov
TI  - Continuity and boundary behavior of the Carath\'eodory metric
JO  - Matematičeskie zametki
PY  - 2000
SP  - 230
EP  - 240
VL  - 67
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2000_67_2_a6/
LA  - ru
ID  - MZM_2000_67_2_a6
ER  - 
%0 Journal Article
%A N. M. Nikolov
%T Continuity and boundary behavior of the Carath\'eodory metric
%J Matematičeskie zametki
%D 2000
%P 230-240
%V 67
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2000_67_2_a6/
%G ru
%F MZM_2000_67_2_a6
N. M. Nikolov. Continuity and boundary behavior of the Carath\'eodory metric. Matematičeskie zametki, Tome 67 (2000) no. 2, pp. 230-240. http://geodesic.mathdoc.fr/item/MZM_2000_67_2_a6/

[1] Jarnicki M., Pflug P., Invariant distances and metrics in complex analysis, De Gruyter, Berlin–New York, 1993 | Zbl

[2] Nivoche St., “The pluricomplex Green function, capacitative notions, and approximation problems in $\mathbb C^n$”, Indiana Univ. Math. J., 44 (1995), 489–510 | DOI | MR | Zbl

[3] Yu J., “Peak functions on weakly pseudoconvex domains”, Indiana Univ. Math. J., 43 (1994), 1271–1295 | DOI | MR | Zbl

[4] Zwonek W., Regularity Properties of the Azukawa Metric, Preprint

[5] Nikolov N., “Nontangential weighted limit of the infinitesimal Caratheodory metric in an $h$-extendible boundary point of a smooth bounded pseudoconvex domain in $\mathbb C^n$”, Acta Math. Hung., 82 (1999), 311–324 | DOI | MR | Zbl

[6] Jarnicki M., Pflug P., “The pluricomplex Green function”, Indiana Univ. Math. J., 44 (1995), 535–543 | DOI | MR | Zbl

[7] Diederich K., Herbort G., “Pseudoconvex domains of semiregular type”, Contributions to Complex Analysis and Analytic Geometry, Aspects of Math., E26, eds. H. Skoda, J. M. Trepreau, Vieweg, Braunschweig, 1994, 127–162 | MR

[8] Poletskii E. A., Shabat B. V., “Invariantnye metriki”, Itogi nauki i tekhniki. Sovremennye problem matematiki. Fundamentalnye napravleniya, 9, VINITI AN SSSR, M., 1986, 73–125 | MR

[9] Hörmander L., “$L^2$ estimates and existence theorems for $\overline \partial $ operator”, Acta Math., 113 (1965), 89–152 | DOI | MR | Zbl

[10] Azukawa K., “The invariant pseudo-metric related to negative plurisubharmonic functions”, Kodai Math. J., 10 (1987), 83–92 | DOI | MR | Zbl