Acyclic $k$-strong coloring of maps on surfaces
Matematičeskie zametki, Tome 67 (2000) no. 1, pp. 36-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_2000_67_1_a3,
     author = {O. V. Borodin and A. V. Kostochka and A. Raspaud and E. Sopena},
     title = {Acyclic $k$-strong coloring of maps on surfaces},
     journal = {Matemati\v{c}eskie zametki},
     pages = {36--45},
     publisher = {mathdoc},
     volume = {67},
     number = {1},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2000_67_1_a3/}
}
TY  - JOUR
AU  - O. V. Borodin
AU  - A. V. Kostochka
AU  - A. Raspaud
AU  - E. Sopena
TI  - Acyclic $k$-strong coloring of maps on surfaces
JO  - Matematičeskie zametki
PY  - 2000
SP  - 36
EP  - 45
VL  - 67
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2000_67_1_a3/
LA  - ru
ID  - MZM_2000_67_1_a3
ER  - 
%0 Journal Article
%A O. V. Borodin
%A A. V. Kostochka
%A A. Raspaud
%A E. Sopena
%T Acyclic $k$-strong coloring of maps on surfaces
%J Matematičeskie zametki
%D 2000
%P 36-45
%V 67
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2000_67_1_a3/
%G ru
%F MZM_2000_67_1_a3
O. V. Borodin; A. V. Kostochka; A. Raspaud; E. Sopena. Acyclic $k$-strong coloring of maps on surfaces. Matematičeskie zametki, Tome 67 (2000) no. 1, pp. 36-45. http://geodesic.mathdoc.fr/item/MZM_2000_67_1_a3/

[1] Appel K., Haken W., “The solution of the four-color-map problem”, Scientific American, 237:4 (1977), 108–121 | MR

[2] Heawood P. J., “Map-color theorem”, Quart. J. Math., 24 (1890), 332–338

[3] Borodin O. V., “Reshenie zadach Ringelya o vershinno-granevoi raskraske ploskikh grafov i o raskraske 1-ploskikh grafov”, Diskretnyi analiz, no. 41, Novosibirsk, 1984, 12–26 | MR | Zbl

[4] Ringel G., “Ein Sechsfarbenproblem auf der Kugel”, Abh. Math. Sem. Univ. Hamburg, 29 (1965), 107–117 | DOI | MR | Zbl

[5] Schumacher H., “Ein 7-Farbensatz 1-einbettbarer Graphen auf der projektiven Ebene”, Abh. Math. Sem. Univ. Hamburg, 54 (1984), 5–14 | DOI | MR | Zbl

[6] Ringel G., “A nine color theorem for the torus and the Klein bottle”, The Theory and Applications of Graphs (Kalamazoo, Mich., 1980), Wiley, New York, 1981, 507–515 | MR

[7] Ore O., Plummer M. D., “Cyclic coloration of plane graphs”, Recent Progress in Combinatorics, Academic Press, New York, 1969, 287–293 | MR

[8] Borodin O. V., Sanders D., Zhao Y., “On cyclic colorings and their generalizations”, Discrete Math. (to appear)

[9] Borodin O. V., “On acyclic coloring of planar graphs”, Diskrete Math., 25 (1979), 198–223 | MR

[10] Albertson M., Berman D., “An acyclic analogue to Heawood's theorem”, Glasgow Math. J., 19 (1977), 169–174

[11] Alon N., Mohar B., Sanders D. P., “On acyclic colorings of graphs on surfaces”, Israel J. Math., 94 (1996), 273–283 | DOI | MR | Zbl

[12] Alon N., Marshall T. H., “Homomorphisms of edge-colored graphs and Coxeter groups”, J. Algebraic Combinatorics, 2 (1998), 277–289

[13] Grünbaum B., “Acyclic colorings of planar graphs”, Israel J. Math., 14:3 (1973), 390–408 | DOI | MR | Zbl

[14] Jensen T. R., Toft B., Graph coloring problems, Wiley, New York, 1995

[15] Nešetřil J., Ruspaud A., Colored Homomorphisms of Colored Mixed Graphs, KAM Series No 98-376, Dept. of Applied Math., Charles University, Prague, 1998

[16] Ruspaud A., Sopena E., “Good and semi-strong colorings of oriented planar graphs”, Inform. Processing Letters, 51 (1994), 171–174 | DOI | MR

[17] Algor I., Alon N., “The star arboricity of graphs”, Discrete Math., 75 (1989), 11–22 | DOI | MR | Zbl

[18] Borodin O. V., Kostochka A. V., Raspo A., Sopena E., “Ob atsiklicheskoi 20-raskrashivaemosti 1-ploskikh grafov”, Diskretnyi analiz i issledovanie operatsii, Novosibirsk, Ser. I, 6:4 (1999), 20–35 | MR | Zbl