Entire functions, analytic continuation, and the fractional parts of a~linear function
Matematičeskie zametki, Tome 66 (1999) no. 4, pp. 540-550.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main result of the paper is as follows. Theorem. Suppose that $G(z)$ is an entire function satisfying the following conditions: 1) the Taylor coefficients of the function $G(z)$ are nonnegative; 2) for some fixed $C>0$ and $A>0$ and for $|z|>R_0$, the following inequality holds: $$ |G(z)|\exp\biggl(C\frac{|z|}{\ln^A|z|}\biggr). $$ {\it Further, suppose that for some fixed $\alpha>0$ the deviation $D_N$ of the sequence $x_n=\{\alpha n\}$, $n=1,2,\dots$, as $N\to\infty$ has the estimate $D_N=O(\ln^BN/N)$. Then if the function $G(z)$ is not an identical constant and the inequality $B+1$ holds, then the power series $\sum_{n=0}^\infty G([\alpha n])z^n$ converging in the disk $|z|1$ cannot be analytically continued to the region $|z|>1$ across any arc of the circle $|z|=1$.}
@article{MZM_1999_66_4_a8,
     author = {A. I. Pavlov},
     title = {Entire functions, analytic continuation, and the fractional parts of a~linear function},
     journal = {Matemati\v{c}eskie zametki},
     pages = {540--550},
     publisher = {mathdoc},
     volume = {66},
     number = {4},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1999_66_4_a8/}
}
TY  - JOUR
AU  - A. I. Pavlov
TI  - Entire functions, analytic continuation, and the fractional parts of a~linear function
JO  - Matematičeskie zametki
PY  - 1999
SP  - 540
EP  - 550
VL  - 66
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1999_66_4_a8/
LA  - ru
ID  - MZM_1999_66_4_a8
ER  - 
%0 Journal Article
%A A. I. Pavlov
%T Entire functions, analytic continuation, and the fractional parts of a~linear function
%J Matematičeskie zametki
%D 1999
%P 540-550
%V 66
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1999_66_4_a8/
%G ru
%F MZM_1999_66_4_a8
A. I. Pavlov. Entire functions, analytic continuation, and the fractional parts of a~linear function. Matematičeskie zametki, Tome 66 (1999) no. 4, pp. 540-550. http://geodesic.mathdoc.fr/item/MZM_1999_66_4_a8/

[1] Wigert S., “Sur les fonction entières”, Oefversigt af K. Vet. Ak. Forh., 57 (1900), 1001–1011

[2] Pavlov A. I., “O nekotorykh klassakh stepennykh ryadov, analiticheski neprodolzhimykh za svoi krug skhodimosti”, Izv. RAN. Ser. matem., 61:4 (1997), 119–136 | MR | Zbl

[3] Hecke E., “Über analytische Funktionen und die Verteilung von Zahlen mod Eins”, Abh. Math. Sem. Univ. Hamburg, 1 (1922), 54–76 | DOI

[4] Schwarz W., “Irrazionale Potezreihen”, Arch. Math. (Basel), 13:1–3 (1962), 228–240 | MR | Zbl

[5] Caroll F. W., Kempermen J. H., “Noncontinuable analytic functions”, Duke Math. J., 32 (1965), 65–84 | DOI | MR

[6] Gelfond A. O., Ischislenie konechnykh raznostei, Fizmatgiz, M., 1959 | MR

[7] Koksma J. F., “Een algemeene stelling uit de theorie der gelijkmatige verdeeling modulo 1”, Mathematika B (Zutphen), 11 (1942–43), 7–11 | MR | Zbl

[8] Kovari T., “A gap-theorem for entire function of infinite order”, Michigan Math. J., 12 (1965), 133–140 | DOI | MR