Representation of homeotopies of a~torus by simple polyhedra with a~boundary
Matematičeskie zametki, Tome 66 (1999) no. 4, pp. 533-539.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1999_66_4_a7,
     author = {M. A. Ovchinnikov},
     title = {Representation of homeotopies of a~torus by simple polyhedra with a~boundary},
     journal = {Matemati\v{c}eskie zametki},
     pages = {533--539},
     publisher = {mathdoc},
     volume = {66},
     number = {4},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1999_66_4_a7/}
}
TY  - JOUR
AU  - M. A. Ovchinnikov
TI  - Representation of homeotopies of a~torus by simple polyhedra with a~boundary
JO  - Matematičeskie zametki
PY  - 1999
SP  - 533
EP  - 539
VL  - 66
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1999_66_4_a7/
LA  - ru
ID  - MZM_1999_66_4_a7
ER  - 
%0 Journal Article
%A M. A. Ovchinnikov
%T Representation of homeotopies of a~torus by simple polyhedra with a~boundary
%J Matematičeskie zametki
%D 1999
%P 533-539
%V 66
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1999_66_4_a7/
%G ru
%F MZM_1999_66_4_a7
M. A. Ovchinnikov. Representation of homeotopies of a~torus by simple polyhedra with a~boundary. Matematičeskie zametki, Tome 66 (1999) no. 4, pp. 533-539. http://geodesic.mathdoc.fr/item/MZM_1999_66_4_a7/

[1] Casler B. G., “An embedding theorem for connected $3$-manifolds with boundary”, Proc. Amer. Math. Soc., 16 (1965), 559–566 | DOI | MR | Zbl

[2] Matveev S. V., “Spetsialnye ostovy kusochno lineinykh mnogoobrazii”, Matem. sb., 92:2 (1973), 282–293 | MR | Zbl

[3] Matveev S. V., “Universalnye $3$-deformatsii spetsialnykh poliedrov”, UMN, 42:3 (1987), 193–194 | MR

[4] Turaev V. G., Viro O. Y., “State sum invariants of $3$-manifolds and quantum $6j$-symbols”, Topology, 31 (1992), 865–902 | DOI | MR | Zbl

[5] Matveev S. V., Fomenko A. T., “Izoenergeticheskie poverkhnosti gamiltonovykh sistem, perechislenie trekhmernykh mnogoobrazii v poryadke vozrastaniya ikh slozhnosti i vychislenie ob'emov zamknutykh giperbolicheskikh mnogoobrazii”, UMN, 43:1 (1988), 5–22 | MR | Zbl

[6] Benedetti R., Petronio C., Branched standard spines of $3$-manifolds, Lecture Notes in Math., 1653, Springer, New York, 1997 | MR | Zbl

[7] Matveev S. V., “Gipoteza Zimana dlya neutolschaemykh spetsialnykh poliedrov ekvivalentna gipoteze Endryusa–Kertisa”, Sib. matem. zh., 28:6 (1987), 66–80 | MR

[8] Matveev S. V., “Preobrazovaniya spetsialnykh spainov i gipoteza Zimana”, Izv. AN SSSR. Ser. matem., 51:5 (1987), 1104–1116 | Zbl

[9] Gillman D., Rolfsen D., “The Zeeman Conjecture for standard spines is equivalent to the Poincaré Conjecture”, Topology, 22:3 (1983), 315–323 | DOI | MR | Zbl

[10] Matveev S. V., “Complexity theory of three-dimensional manifolds”, Acta Appl. Math., 19 (1990), 101–130 | MR | Zbl

[11] Matveev S. V., On a computer recognition of $3$-manifolds, MSRI Preprint No 1997-028, MSRI, 1997

[12] Adams C., “SNAPPEA: The Week's hyperbolic $3$-manifolds program”, Notices Amer. Math. Soc., 37 (1990), 273–275

[13] Tsishang Kh., Fogt E., Koldevai Kh.-D., Poverkhnosti i razryvnye gruppy, Nauka, M., 1988

[14] Kokseter G. S. M., Mozer U. O., Porozhdayuschie elementy i opredelyayuschie sootnosheniya, Nauka, M., 1980