Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1999_66_4_a3, author = {S. A. Drozdovskii and V. V. Filippov}, title = {A~selection theorem for a~new class of multivalued mappings}, journal = {Matemati\v{c}eskie zametki}, pages = {503--507}, publisher = {mathdoc}, volume = {66}, number = {4}, year = {1999}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1999_66_4_a3/} }
S. A. Drozdovskii; V. V. Filippov. A~selection theorem for a~new class of multivalued mappings. Matematičeskie zametki, Tome 66 (1999) no. 4, pp. 503-507. http://geodesic.mathdoc.fr/item/MZM_1999_66_4_a3/
[1] Filippov V. V., Prostranstva reshenii obyknovennykh differentsialnykh uravnenii, Izd. MGU, M., 1993 | Zbl
[2] Averna D., Marano S. A., “Existence of solutions for operator inclusions: A unified approach”, Rend. Sem. Mat. Univ. Padova (to appear)
[3] Bressan A., “Upper and lower semicontinuous differential inclusions: A unified approach”, Nonlinear Controllability and Optimal Control, Pure Appl. Math., 133, ed. H. J. Sussman, Dekker, New York, 1990, 21–31 | MR | Zbl
[4] Lojasiewicz S., “Some theorems of Scorza Dragoni type for multifunctions with application to the problem of existence of solutions for differential multivalued equations”, Mathematical Control Theory, Banach Center Publ., 14, eds. C. Olech, B. Jakubczyk, J. Zabczyk, PWN, Warsaw, 1985, 625–643 | MR
[5] Michael E., “A theorem on semi-continuous set-valued functions”, Duke Math. J., 26:4 (1959), 647–652 | DOI | MR