A~selection theorem for a~new class of multivalued mappings
Matematičeskie zametki, Tome 66 (1999) no. 4, pp. 503-507.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1999_66_4_a3,
     author = {S. A. Drozdovskii and V. V. Filippov},
     title = {A~selection theorem for a~new class of multivalued mappings},
     journal = {Matemati\v{c}eskie zametki},
     pages = {503--507},
     publisher = {mathdoc},
     volume = {66},
     number = {4},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1999_66_4_a3/}
}
TY  - JOUR
AU  - S. A. Drozdovskii
AU  - V. V. Filippov
TI  - A~selection theorem for a~new class of multivalued mappings
JO  - Matematičeskie zametki
PY  - 1999
SP  - 503
EP  - 507
VL  - 66
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1999_66_4_a3/
LA  - ru
ID  - MZM_1999_66_4_a3
ER  - 
%0 Journal Article
%A S. A. Drozdovskii
%A V. V. Filippov
%T A~selection theorem for a~new class of multivalued mappings
%J Matematičeskie zametki
%D 1999
%P 503-507
%V 66
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1999_66_4_a3/
%G ru
%F MZM_1999_66_4_a3
S. A. Drozdovskii; V. V. Filippov. A~selection theorem for a~new class of multivalued mappings. Matematičeskie zametki, Tome 66 (1999) no. 4, pp. 503-507. http://geodesic.mathdoc.fr/item/MZM_1999_66_4_a3/

[1] Filippov V. V., Prostranstva reshenii obyknovennykh differentsialnykh uravnenii, Izd. MGU, M., 1993 | Zbl

[2] Averna D., Marano S. A., “Existence of solutions for operator inclusions: A unified approach”, Rend. Sem. Mat. Univ. Padova (to appear)

[3] Bressan A., “Upper and lower semicontinuous differential inclusions: A unified approach”, Nonlinear Controllability and Optimal Control, Pure Appl. Math., 133, ed. H. J. Sussman, Dekker, New York, 1990, 21–31 | MR | Zbl

[4] Lojasiewicz S., “Some theorems of Scorza Dragoni type for multifunctions with application to the problem of existence of solutions for differential multivalued equations”, Mathematical Control Theory, Banach Center Publ., 14, eds. C. Olech, B. Jakubczyk, J. Zabczyk, PWN, Warsaw, 1985, 625–643 | MR

[5] Michael E., “A theorem on semi-continuous set-valued functions”, Duke Math. J., 26:4 (1959), 647–652 | DOI | MR