Concerning the Sierpinski–Schinzel system of Diophantine equations
Matematičeskie zametki, Tome 66 (1999) no. 2, pp. 181-187
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{MZM_1999_66_2_a3,
author = {M. Z. Garaev and V. N. Chubarikov},
title = {Concerning the {Sierpinski{\textendash}Schinzel} system of {Diophantine} equations},
journal = {Matemati\v{c}eskie zametki},
pages = {181--187},
year = {1999},
volume = {66},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1999_66_2_a3/}
}
M. Z. Garaev; V. N. Chubarikov. Concerning the Sierpinski–Schinzel system of Diophantine equations. Matematičeskie zametki, Tome 66 (1999) no. 2, pp. 181-187. http://geodesic.mathdoc.fr/item/MZM_1999_66_2_a3/
[1] Schinzel A., Sierpinski W., “Sur l'équation diophantine $(x^2-1)(y^2-1)=[((y-x)/2)^2-1]^2$”, Elem. Math., 18 (1963), 132–133 | MR | Zbl
[2] Mordell L. J., Diophantine Equations, Pure Appl. Math., 30, Acad. Press, London–New York, 1969 | MR | Zbl
[3] Cao Z.-F., “A generalization of the Schinzel–Sierpinski system of equations”, J. Harbin Inst. Tech., 23:5 (1991), 9–14, (in Chinese) | MR | Zbl
[4] Wang Y.-B., “On the diophantine equation $(x^2-1)(y^2-1)=(z^2-1)^2$”, Heilongjiang Daxue Ziran Kexue Xuebao, 1989, no. 4, 84–85, (in Chinese) | Zbl
[5] Huaming Wu, Maohua Le, “A note on the diophantine equation $(x^2-1)(y^2-1)=(z^2-1)^2$”, Colloq. Math., 71:1 (1996), 133–136 | MR