Concerning the Sierpinski--Schinzel system of Diophantine equations
Matematičeskie zametki, Tome 66 (1999) no. 2, pp. 181-187.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1999_66_2_a3,
     author = {M. Z. Garaev and V. N. Chubarikov},
     title = {Concerning the {Sierpinski--Schinzel} system of {Diophantine} equations},
     journal = {Matemati\v{c}eskie zametki},
     pages = {181--187},
     publisher = {mathdoc},
     volume = {66},
     number = {2},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1999_66_2_a3/}
}
TY  - JOUR
AU  - M. Z. Garaev
AU  - V. N. Chubarikov
TI  - Concerning the Sierpinski--Schinzel system of Diophantine equations
JO  - Matematičeskie zametki
PY  - 1999
SP  - 181
EP  - 187
VL  - 66
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1999_66_2_a3/
LA  - ru
ID  - MZM_1999_66_2_a3
ER  - 
%0 Journal Article
%A M. Z. Garaev
%A V. N. Chubarikov
%T Concerning the Sierpinski--Schinzel system of Diophantine equations
%J Matematičeskie zametki
%D 1999
%P 181-187
%V 66
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1999_66_2_a3/
%G ru
%F MZM_1999_66_2_a3
M. Z. Garaev; V. N. Chubarikov. Concerning the Sierpinski--Schinzel system of Diophantine equations. Matematičeskie zametki, Tome 66 (1999) no. 2, pp. 181-187. http://geodesic.mathdoc.fr/item/MZM_1999_66_2_a3/

[1] Schinzel A., Sierpinski W., “Sur l'équation diophantine $(x^2-1)(y^2-1)=[((y-x)/2)^2-1]^2$”, Elem. Math., 18 (1963), 132–133 | MR | Zbl

[2] Mordell L. J., Diophantine Equations, Pure Appl. Math., 30, Acad. Press, London–New York, 1969 | MR | Zbl

[3] Cao Z.-F., “A generalization of the Schinzel–Sierpinski system of equations”, J. Harbin Inst. Tech., 23:5 (1991), 9–14, (in Chinese) | MR | Zbl

[4] Wang Y.-B., “On the diophantine equation $(x^2-1)(y^2-1)=(z^2-1)^2$”, Heilongjiang Daxue Ziran Kexue Xuebao, 1989, no. 4, 84–85, (in Chinese) | Zbl

[5] Huaming Wu, Maohua Le, “A note on the diophantine equation $(x^2-1)(y^2-1)=(z^2-1)^2$”, Colloq. Math., 71:1 (1996), 133–136 | MR