Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1999_66_2_a3, author = {M. Z. Garaev and V. N. Chubarikov}, title = {Concerning the {Sierpinski--Schinzel} system of {Diophantine} equations}, journal = {Matemati\v{c}eskie zametki}, pages = {181--187}, publisher = {mathdoc}, volume = {66}, number = {2}, year = {1999}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1999_66_2_a3/} }
M. Z. Garaev; V. N. Chubarikov. Concerning the Sierpinski--Schinzel system of Diophantine equations. Matematičeskie zametki, Tome 66 (1999) no. 2, pp. 181-187. http://geodesic.mathdoc.fr/item/MZM_1999_66_2_a3/
[1] Schinzel A., Sierpinski W., “Sur l'équation diophantine $(x^2-1)(y^2-1)=[((y-x)/2)^2-1]^2$”, Elem. Math., 18 (1963), 132–133 | MR | Zbl
[2] Mordell L. J., Diophantine Equations, Pure Appl. Math., 30, Acad. Press, London–New York, 1969 | MR | Zbl
[3] Cao Z.-F., “A generalization of the Schinzel–Sierpinski system of equations”, J. Harbin Inst. Tech., 23:5 (1991), 9–14, (in Chinese) | MR | Zbl
[4] Wang Y.-B., “On the diophantine equation $(x^2-1)(y^2-1)=(z^2-1)^2$”, Heilongjiang Daxue Ziran Kexue Xuebao, 1989, no. 4, 84–85, (in Chinese) | Zbl
[5] Huaming Wu, Maohua Le, “A note on the diophantine equation $(x^2-1)(y^2-1)=(z^2-1)^2$”, Colloq. Math., 71:1 (1996), 133–136 | MR