Minimality and unique ergodicity of homogeneous actions
Matematičeskie zametki, Tome 66 (1999) no. 2, pp. 293-301.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1999_66_2_a16,
     author = {A. N. Starkov},
     title = {Minimality and unique ergodicity of homogeneous actions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {293--301},
     publisher = {mathdoc},
     volume = {66},
     number = {2},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1999_66_2_a16/}
}
TY  - JOUR
AU  - A. N. Starkov
TI  - Minimality and unique ergodicity of homogeneous actions
JO  - Matematičeskie zametki
PY  - 1999
SP  - 293
EP  - 301
VL  - 66
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1999_66_2_a16/
LA  - ru
ID  - MZM_1999_66_2_a16
ER  - 
%0 Journal Article
%A A. N. Starkov
%T Minimality and unique ergodicity of homogeneous actions
%J Matematičeskie zametki
%D 1999
%P 293-301
%V 66
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1999_66_2_a16/
%G ru
%F MZM_1999_66_2_a16
A. N. Starkov. Minimality and unique ergodicity of homogeneous actions. Matematičeskie zametki, Tome 66 (1999) no. 2, pp. 293-301. http://geodesic.mathdoc.fr/item/MZM_1999_66_2_a16/

[1] Ratner M., “Interactions between ergodic theory, Lie groups, and number theory”, Proc. of the ICM (Zurich, Switzerland, 1994), Zurich, 1995, 157–182 | MR | Zbl

[2] Weiss B., “Finite-dimensional representations and subgroup actions on homogeneous spaces”, Israel J. Math., 106 (1998), 189–207 | DOI | MR | Zbl

[3] Furstenberg H., “The unique ergodicity of the horocycle flow”, Recent Advances in Topological Dynamics, Lecture Notes in Math., 318, Springer, Berlin, 1972, 95–115 | MR

[4] Starkov A. N., “Novyi progress v teorii odnorodnykh potokov”, UMN, 52 (1997), 87–192 | MR | Zbl

[5] Kleinbock D. Y., Margulis G. A., “Bounded orbits of non-quasiunipotent flows on homogeneous spaces”, Amer. Math. Soc. Transl. Ser. 2, 171 (1996), 141–171 | MR | Zbl

[6] Starkov A. N., “Minimal sets of homogeneous flows”, Ergodic Theory Dynamical Systems, 15 (1995), 361–377 | MR | Zbl

[7] Mozes S., Weiss B., “Minimality and unique ergodicity for subgroup actions”, Ann. Inst. Fourier (Grenoble), 48:5 (1998), 1533–1541 | MR | Zbl

[8] Mozes S., “Epimorphic subgroups and invariant measures”, Ergodic Theory Dynamical Systems, 15 (1995), 1207–1210 | MR | Zbl

[9] Margulis G. A., Tomanov G., “Measure rigidity for almost linear groups and its applications”, J. Anal. Math., 69 (1996), 25–54 | DOI | MR | Zbl

[10] Gottschalk W. H., Hedlund G. A., Topological Dynamics, Amer. Math. Soc. Colloq. Publ., 36, Providence (R.I.), 1955 | MR | Zbl

[11] Ragunatan M. S., Diskretnye podgruppy grupp Li, Mir, M., 1977

[12] Margulis G. A., Tomanov G., “Invariant measures for actions of unipotent groups over local fields on homogeneous spaces”, Invent. Math., 116 (1994), 347–392 | DOI | MR | Zbl

[13] Starkov A. N., “O kriterii ergodichnosti $G$-indutsirovannykh potokov”, UMN, 42:3 (1987), 197–198 | MR | Zbl

[14] Witte D., “Zero-entropy affine maps on homogeneous spaces”, Amer. J. Math., 109 (1987), 927–961 | DOI | MR | Zbl

[15] Dani S. G., “A simple proof of Borel's density theorem”, Math. Z., 174 (1980), 81–94 | DOI | MR | Zbl

[16] Brezin J., Moore C. C., “Flows on homogeneous spaces: a new look”, Amer. J. Math., 103:3 (1981), 571–613 | DOI | MR | Zbl

[17] Auslander L., “An exposition of the structure of solvmanifolds”, Bull. Amer. Math. Soc., 79 (1973), 227–261 | DOI | MR | Zbl

[18] Moore C. C., “Ergodicity of flows on homogeneous spaces”, Amer. J. Math., 88 (1966), 154–178 | DOI | MR | Zbl

[19] Prasad G., Raghunathan M. S., “Cartan subgroups and lattices in semisimple groups”, Ann. of Math. (2), 96 (1972), 296–317 | DOI | MR | Zbl