Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1999_66_2_a16, author = {A. N. Starkov}, title = {Minimality and unique ergodicity of homogeneous actions}, journal = {Matemati\v{c}eskie zametki}, pages = {293--301}, publisher = {mathdoc}, volume = {66}, number = {2}, year = {1999}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1999_66_2_a16/} }
A. N. Starkov. Minimality and unique ergodicity of homogeneous actions. Matematičeskie zametki, Tome 66 (1999) no. 2, pp. 293-301. http://geodesic.mathdoc.fr/item/MZM_1999_66_2_a16/
[1] Ratner M., “Interactions between ergodic theory, Lie groups, and number theory”, Proc. of the ICM (Zurich, Switzerland, 1994), Zurich, 1995, 157–182 | MR | Zbl
[2] Weiss B., “Finite-dimensional representations and subgroup actions on homogeneous spaces”, Israel J. Math., 106 (1998), 189–207 | DOI | MR | Zbl
[3] Furstenberg H., “The unique ergodicity of the horocycle flow”, Recent Advances in Topological Dynamics, Lecture Notes in Math., 318, Springer, Berlin, 1972, 95–115 | MR
[4] Starkov A. N., “Novyi progress v teorii odnorodnykh potokov”, UMN, 52 (1997), 87–192 | MR | Zbl
[5] Kleinbock D. Y., Margulis G. A., “Bounded orbits of non-quasiunipotent flows on homogeneous spaces”, Amer. Math. Soc. Transl. Ser. 2, 171 (1996), 141–171 | MR | Zbl
[6] Starkov A. N., “Minimal sets of homogeneous flows”, Ergodic Theory Dynamical Systems, 15 (1995), 361–377 | MR | Zbl
[7] Mozes S., Weiss B., “Minimality and unique ergodicity for subgroup actions”, Ann. Inst. Fourier (Grenoble), 48:5 (1998), 1533–1541 | MR | Zbl
[8] Mozes S., “Epimorphic subgroups and invariant measures”, Ergodic Theory Dynamical Systems, 15 (1995), 1207–1210 | MR | Zbl
[9] Margulis G. A., Tomanov G., “Measure rigidity for almost linear groups and its applications”, J. Anal. Math., 69 (1996), 25–54 | DOI | MR | Zbl
[10] Gottschalk W. H., Hedlund G. A., Topological Dynamics, Amer. Math. Soc. Colloq. Publ., 36, Providence (R.I.), 1955 | MR | Zbl
[11] Ragunatan M. S., Diskretnye podgruppy grupp Li, Mir, M., 1977
[12] Margulis G. A., Tomanov G., “Invariant measures for actions of unipotent groups over local fields on homogeneous spaces”, Invent. Math., 116 (1994), 347–392 | DOI | MR | Zbl
[13] Starkov A. N., “O kriterii ergodichnosti $G$-indutsirovannykh potokov”, UMN, 42:3 (1987), 197–198 | MR | Zbl
[14] Witte D., “Zero-entropy affine maps on homogeneous spaces”, Amer. J. Math., 109 (1987), 927–961 | DOI | MR | Zbl
[15] Dani S. G., “A simple proof of Borel's density theorem”, Math. Z., 174 (1980), 81–94 | DOI | MR | Zbl
[16] Brezin J., Moore C. C., “Flows on homogeneous spaces: a new look”, Amer. J. Math., 103:3 (1981), 571–613 | DOI | MR | Zbl
[17] Auslander L., “An exposition of the structure of solvmanifolds”, Bull. Amer. Math. Soc., 79 (1973), 227–261 | DOI | MR | Zbl
[18] Moore C. C., “Ergodicity of flows on homogeneous spaces”, Amer. J. Math., 88 (1966), 154–178 | DOI | MR | Zbl
[19] Prasad G., Raghunathan M. S., “Cartan subgroups and lattices in semisimple groups”, Ann. of Math. (2), 96 (1972), 296–317 | DOI | MR | Zbl