Interpolation and integral norms of hyperbolic polynomials
Matematičeskie zametki, Tome 66 (1999) no. 1, pp. 20-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1999_66_1_a2,
     author = {\`E. S. Belinskii},
     title = {Interpolation and integral norms of hyperbolic polynomials},
     journal = {Matemati\v{c}eskie zametki},
     pages = {20--29},
     publisher = {mathdoc},
     volume = {66},
     number = {1},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1999_66_1_a2/}
}
TY  - JOUR
AU  - È. S. Belinskii
TI  - Interpolation and integral norms of hyperbolic polynomials
JO  - Matematičeskie zametki
PY  - 1999
SP  - 20
EP  - 29
VL  - 66
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1999_66_1_a2/
LA  - ru
ID  - MZM_1999_66_1_a2
ER  - 
%0 Journal Article
%A È. S. Belinskii
%T Interpolation and integral norms of hyperbolic polynomials
%J Matematičeskie zametki
%D 1999
%P 20-29
%V 66
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1999_66_1_a2/
%G ru
%F MZM_1999_66_1_a2
È. S. Belinskii. Interpolation and integral norms of hyperbolic polynomials. Matematičeskie zametki, Tome 66 (1999) no. 1, pp. 20-29. http://geodesic.mathdoc.fr/item/MZM_1999_66_1_a2/

[1] Kashin B. S., “On trigonometric polynomials with coefficients whose moduli are equal to $0$ or $1$”, Theory of Functions and Approximations, Proc. 3rd Saratov Winter School. Interuniv. Sci. Collect. Part 1 (Saratov, 1986), Saratov, 1987, 19–30 | MR | Zbl

[2] Kashin B. S., Temlyakov V. N., “O nailuchshikh $m$-chlennykh priblizheniyakh i entropii mnozhestv v prostranstve $L^1$”, Matem. zametki, 56:5 (1994), 57–86 | MR | Zbl

[3] Zigmund A., Trigonometricheskie ryady, T. 1, 2, Mir, M., 1965

[4] Temlyakov V. N., “Priblizhenie funktsii s ogranichennoi smeshannoi proizvodnoi”, Tr. MIAN, 179, Nauka, M., 1988, 3–109

[5] Peller V. V., “Opisanie operatorov Gankelya klassa ${\frak S}_p$ pri $p>0$, issledovanie skorosti ratsionalnoi approksimatsii i drugie prilozheniya”, Matem. sb., 113:4 (1983), 538–581 | MR

[6] Belinskii E. S., Liflyand E. R., “Approximation properties in $L_p$, $0

1$”, Funct. Approx. Comment. Math., 22 (1993), 189–200 | MR

[7] Temlyakov V. N., Approximation of periodic functions, Nova Science Publ., New York, 1993 | Zbl

[8] Schechtman G., “More on embeddings subspaces of $L_p$ in $l_n^r$”, Compos. Math., 61 (1987), 159–170 | MR

[9] Bourgain J., Lindenstrauss J., Milman V., “Approximation of zonoids by zonotopes”, Acta Math., 162 (1989), 73–141 | DOI | MR | Zbl

[10] Kashin B. S., Temlyakov V. N., “Ob odnoi norme i svyazannykh s nei prilozheniyakh”, Matem. zametki, 64:4 (1998), 637–640 | MR | Zbl

[11] De Vore R. A., Konyagin S. V., Temlyakov V. N., “Hyperbolic wavelet approximation”, Constructive Approx., 14:1 (1998), 1–26 | DOI | Zbl

[12] Tikhomirov V. M., Nekotorye voprosy teorii priblizhenii, Izd-vo MGU, M., 1976

[13] Pich A., Operatornye idealy, Mir, M., 1982

[14] Kolmogorov A. N., Tikhomirov V. M., “$\varepsilon $-entropiya i $\varepsilon $-emkost mnozhestv v prostranstvakh funktsii”, UMN, 14:2 (1959), 3–86 | MR

[15] Sudakov V. N., “Gaussian random processes and measures of solid angles in Hilbert space”, Dokl. AN SSSR, 12 (1971), 412–415 | MR | Zbl

[16] Pajor A., Tomczak-Jaegermann N., “Subspaces of small codimension of finite-dimensional Banach spaces”, Proc. Amer. Math. Soc., 97:4 (1986), 637–642 | DOI | MR | Zbl

[17] Belinsky E. S., “Estimates of entropy numbers and Gaussian measures for classes of functions with bounded mixed derivative”, J. Approx. Theory, 93:1 (1998), 114–127 | DOI | MR | Zbl

[18] Bourgain J., Pajor A., Szarek S. J., Tomczak-Jaegermann N., “On the duality problem for entropy numbers of operators”, Geometric Aspects of Functional Analysis, Isr. Semin., Lecture Notes in Math., 1376, Springer-Verlag, Berlin, 1989, 50–63 | MR

[19] Davis W. J., Milman V. D., Tomczak-Jaegermann N., “The distance between certain $n$-dimensional Banach spaces”, Israel J. Math., 39 (1981), 1–15 | DOI | MR | Zbl

[20] G. Pisier, “Un theoreme sur les operateurs lineaires entre espaces de Banach qui se factorisent par un espace de Hilbert”, Ann. Sci. Ec. de Norm. Sup. Ser. IV, 13 (1980), 23–43 | MR | Zbl