Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1999_66_1_a2, author = {\`E. S. Belinskii}, title = {Interpolation and integral norms of hyperbolic polynomials}, journal = {Matemati\v{c}eskie zametki}, pages = {20--29}, publisher = {mathdoc}, volume = {66}, number = {1}, year = {1999}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1999_66_1_a2/} }
È. S. Belinskii. Interpolation and integral norms of hyperbolic polynomials. Matematičeskie zametki, Tome 66 (1999) no. 1, pp. 20-29. http://geodesic.mathdoc.fr/item/MZM_1999_66_1_a2/
[1] Kashin B. S., “On trigonometric polynomials with coefficients whose moduli are equal to $0$ or $1$”, Theory of Functions and Approximations, Proc. 3rd Saratov Winter School. Interuniv. Sci. Collect. Part 1 (Saratov, 1986), Saratov, 1987, 19–30 | MR | Zbl
[2] Kashin B. S., Temlyakov V. N., “O nailuchshikh $m$-chlennykh priblizheniyakh i entropii mnozhestv v prostranstve $L^1$”, Matem. zametki, 56:5 (1994), 57–86 | MR | Zbl
[3] Zigmund A., Trigonometricheskie ryady, T. 1, 2, Mir, M., 1965
[4] Temlyakov V. N., “Priblizhenie funktsii s ogranichennoi smeshannoi proizvodnoi”, Tr. MIAN, 179, Nauka, M., 1988, 3–109
[5] Peller V. V., “Opisanie operatorov Gankelya klassa ${\frak S}_p$ pri $p>0$, issledovanie skorosti ratsionalnoi approksimatsii i drugie prilozheniya”, Matem. sb., 113:4 (1983), 538–581 | MR
[6] Belinskii E. S., Liflyand E. R., “Approximation properties in $L_p$, $0
1$”, Funct. Approx. Comment. Math., 22 (1993), 189–200 | MR[7] Temlyakov V. N., Approximation of periodic functions, Nova Science Publ., New York, 1993 | Zbl
[8] Schechtman G., “More on embeddings subspaces of $L_p$ in $l_n^r$”, Compos. Math., 61 (1987), 159–170 | MR
[9] Bourgain J., Lindenstrauss J., Milman V., “Approximation of zonoids by zonotopes”, Acta Math., 162 (1989), 73–141 | DOI | MR | Zbl
[10] Kashin B. S., Temlyakov V. N., “Ob odnoi norme i svyazannykh s nei prilozheniyakh”, Matem. zametki, 64:4 (1998), 637–640 | MR | Zbl
[11] De Vore R. A., Konyagin S. V., Temlyakov V. N., “Hyperbolic wavelet approximation”, Constructive Approx., 14:1 (1998), 1–26 | DOI | Zbl
[12] Tikhomirov V. M., Nekotorye voprosy teorii priblizhenii, Izd-vo MGU, M., 1976
[13] Pich A., Operatornye idealy, Mir, M., 1982
[14] Kolmogorov A. N., Tikhomirov V. M., “$\varepsilon $-entropiya i $\varepsilon $-emkost mnozhestv v prostranstvakh funktsii”, UMN, 14:2 (1959), 3–86 | MR
[15] Sudakov V. N., “Gaussian random processes and measures of solid angles in Hilbert space”, Dokl. AN SSSR, 12 (1971), 412–415 | MR | Zbl
[16] Pajor A., Tomczak-Jaegermann N., “Subspaces of small codimension of finite-dimensional Banach spaces”, Proc. Amer. Math. Soc., 97:4 (1986), 637–642 | DOI | MR | Zbl
[17] Belinsky E. S., “Estimates of entropy numbers and Gaussian measures for classes of functions with bounded mixed derivative”, J. Approx. Theory, 93:1 (1998), 114–127 | DOI | MR | Zbl
[18] Bourgain J., Pajor A., Szarek S. J., Tomczak-Jaegermann N., “On the duality problem for entropy numbers of operators”, Geometric Aspects of Functional Analysis, Isr. Semin., Lecture Notes in Math., 1376, Springer-Verlag, Berlin, 1989, 50–63 | MR
[19] Davis W. J., Milman V. D., Tomczak-Jaegermann N., “The distance between certain $n$-dimensional Banach spaces”, Israel J. Math., 39 (1981), 1–15 | DOI | MR | Zbl
[20] G. Pisier, “Un theoreme sur les operateurs lineaires entre espaces de Banach qui se factorisent par un espace de Hilbert”, Ann. Sci. Ec. de Norm. Sup. Ser. IV, 13 (1980), 23–43 | MR | Zbl