Partitions of the phase space of a~measure-preserving $\mathbb Z^d$-action into towers
Matematičeskie zametki, Tome 65 (1999) no. 5, pp. 712-725.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1999_65_5_a8,
     author = {A. A. Prikhod'ko},
     title = {Partitions of the phase space of a~measure-preserving $\mathbb Z^d$-action into towers},
     journal = {Matemati\v{c}eskie zametki},
     pages = {712--725},
     publisher = {mathdoc},
     volume = {65},
     number = {5},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1999_65_5_a8/}
}
TY  - JOUR
AU  - A. A. Prikhod'ko
TI  - Partitions of the phase space of a~measure-preserving $\mathbb Z^d$-action into towers
JO  - Matematičeskie zametki
PY  - 1999
SP  - 712
EP  - 725
VL  - 65
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1999_65_5_a8/
LA  - ru
ID  - MZM_1999_65_5_a8
ER  - 
%0 Journal Article
%A A. A. Prikhod'ko
%T Partitions of the phase space of a~measure-preserving $\mathbb Z^d$-action into towers
%J Matematičeskie zametki
%D 1999
%P 712-725
%V 65
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1999_65_5_a8/
%G ru
%F MZM_1999_65_5_a8
A. A. Prikhod'ko. Partitions of the phase space of a~measure-preserving $\mathbb Z^d$-action into towers. Matematičeskie zametki, Tome 65 (1999) no. 5, pp. 712-725. http://geodesic.mathdoc.fr/item/MZM_1999_65_5_a8/

[1] Halmos P. R., Lectures on ergodic theory, Chelsea, New York, 1960, Reprint

[2] Katok A. B., Stepin A. M., “Approksimatsiya v ergodicheskoi teorii”, UMN, 22:5 (137) (1967), 81–106 | MR | Zbl

[3] Thouvenot J.-P., “Quelques propriétés des systèmes dynamiques qui se décomposent en un produit de deux systèmes dont l'un est un schéma de Bernoulli”, Israel J. Math., 21:2–3 (1975)

[4] Lehrer E., Weiss B., “An $\varepsilon $-free Rohlin lemma”, Ergodic Theory Dynamical Systems, 2:1 (1982), 45–48 | MR | Zbl

[5] Ryzhikov V. V., “Svoistvo Rokhlina–Khalmosha bez $\varepsilon $ ne vypolnyaetsya dlya $\mathbb {Z}^2$-deistvii”, Matem. zametki, 44:2 (1988), 208–215 | MR

[6] Alpern S., “Generic properties of measure preserving homeomorphisms”, Springer Lecture Notes in Math., no. 729, 1978, 16–27

[7] Alpern S., “Return times and conjugations of antiperiodic automorphisms”, Ergodic Theory Dynamical Systems, 1:2 (1981), 135–143 | MR | Zbl

[8] Prikhodko A. A., Ryzhikov V. V., “Maksimalnaya lemma Rokhlina–Khalmosha–Alperna”, Vestn. MGU. Ser. Matem., mekh., 58:3 (1996), 37–41 | MR

[9] Prikhodko A. A., “Spetsialnoe predstavlenie aperiodicheskogo avtomorfizma prostranstva Lebega”, Matem. zametki, 58:2 (1995), 314–316 | MR

[10] Alpern S., “Nonstable ergodic homeomorphisms of $\mathbb {R}^4$”, Indiana Univ. Math. J., 32:2 (1983), 187–191 | DOI | MR | Zbl

[11] Ryzhikov V. V., “Predstavlenie preobrazovanii, sokhranyayuschikh meru Lebega, v vide proizvedeniya periodicheskikh preobrazovanii”, Matem. zametki, 38:6 (1985), 860–865 | MR | Zbl

[12] Rudolph D., “A two-valued step-coding for ergodic flows”, Math. Z., 150 (1976), 201–220 | DOI | MR | Zbl

[13] Rudolph D., “Markov tilings of $\mathbb {R}^n$ and representations of $\mathbb {R}^n$-actions”, Contemp. Math., 94 (1987), 271–290 | MR

[14] Ornstein D., Weiss B., “Entropy and isomorphism theorems for actions of amenable groups”, Bull. Amer. Math. Soc., 2 (1980), 161–164 | DOI | MR | Zbl

[15] Prikhod'ko A., “Special representations of $\mathbb {Z}^n$-actions”, J. Dyn. Control Systems, 2 (1996), 239–253 | DOI | MR | Zbl

[16] Egorov A. V., Prikhodko A. A., “Arifmeticheskaya teoriya pryamougolnykh parketov”, Matem. sb., 189:12 (1998), 29–58 | MR | Zbl

[17] Barnes F. W., “Algebraic theory of brick packings, II”, Discrete Math., 42:2 (1982), 129–144 | DOI | MR | Zbl