Short-range potential and a~model of the theory of extensions of operators for a~resonator with a~semitransparent boundary
Matematičeskie zametki, Tome 65 (1999) no. 5, pp. 703-711.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1999_65_5_a7,
     author = {I. Yu. Popov},
     title = {Short-range potential and a~model of the theory of extensions of operators for a~resonator with a~semitransparent boundary},
     journal = {Matemati\v{c}eskie zametki},
     pages = {703--711},
     publisher = {mathdoc},
     volume = {65},
     number = {5},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1999_65_5_a7/}
}
TY  - JOUR
AU  - I. Yu. Popov
TI  - Short-range potential and a~model of the theory of extensions of operators for a~resonator with a~semitransparent boundary
JO  - Matematičeskie zametki
PY  - 1999
SP  - 703
EP  - 711
VL  - 65
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1999_65_5_a7/
LA  - ru
ID  - MZM_1999_65_5_a7
ER  - 
%0 Journal Article
%A I. Yu. Popov
%T Short-range potential and a~model of the theory of extensions of operators for a~resonator with a~semitransparent boundary
%J Matematičeskie zametki
%D 1999
%P 703-711
%V 65
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1999_65_5_a7/
%G ru
%F MZM_1999_65_5_a7
I. Yu. Popov. Short-range potential and a~model of the theory of extensions of operators for a~resonator with a~semitransparent boundary. Matematičeskie zametki, Tome 65 (1999) no. 5, pp. 703-711. http://geodesic.mathdoc.fr/item/MZM_1999_65_5_a7/

[1] Albeverio S., Gesztezy F., Hoegh-Kron R., Holden H., Solvable Models in Quantum Mechanics, Springer, Berlin, 1988 | Zbl

[2] Kriman A. M., Ruden P. P., “Electron transfer between regions of quasi-two-dimensional and three-dimensional dynamics in semiconductor microstructures”, Phys. Rev. B, 32:12 (1985), 8013–8020 | DOI

[3] Popov I. Yu., Popova S. L., “The extension theory and resonances for a quantum waveguide”, Phys. Lett. A, 173 (1993), 484–488 | DOI

[4] Sols F., “Scattering, dissipation, and transport in mesoscopic systems”, Ann. Physics, 214:2 (1992), 386–438 | DOI

[5] Pavlov B. S., “Teoriya rasshirenii i yavno reshaemye modeli”, UMN, 42:6 (1987), 99–131 | MR

[6] Popov I. Yu., “The extension theory and diffraction problems”, Lecture Notes in Phys., 324, 1989, 218–229 | Zbl

[7] Popov I. Yu., “The resonator with narrow slit and the model based on the operator extensions theory”, J. Math. Phys., 33:11 (1992), 3794–3801 | DOI | MR | Zbl

[8] Popov I. Yu., “The extension theory and the opening in semitransparent surface”, J. Math. Phys., 33:5 (1992), 1685–1689 | DOI | MR | Zbl

[9] Antoine J. P., Gesztesy F., Shabani J., “Exactly solvable models of sphere interactions in quantum mechanics”, J. Phys. A, 20 (1987), 3687–3712 | DOI | MR

[10] Ikebe T., Shimada S., “Spectral and scattering theory for the Schrödinger operators with penetrable wall potentials”, J. Math. Kyoto Univ., 31:1 (1991), 219–258 | MR | Zbl

[11] Shimada S., “The approximation of the Schrödinger operators with penetrable wall potentials in terms of short range Hamiltonians”, J. Math. Kyoto Univ., 32:3 (1992), 583–592 | MR | Zbl

[12] Mochizuki K., Scattering Theory for the Wave Equation, Kinokuniya, Tokyo, 1984

[13] Agranovich M. S., “Spektralnye svoistva zadach difraktsii”, Prilozhenie k knige: Voitovich N. N., Katsenelenbaum B. Z., Sivov A. N., Obobschennyi metod sobstvennykh kolebanii v teorii difraktsii, Nauka, M., 1977 | Zbl