Tensor products of idempotent semimodules. An algebraic approach
Matematičeskie zametki, Tome 65 (1999) no. 4, pp. 573-586.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1999_65_4_a8,
     author = {G. L. Litvinov and V. P. Maslov and G. B. Shpiz},
     title = {Tensor products of idempotent semimodules. {An} algebraic approach},
     journal = {Matemati\v{c}eskie zametki},
     pages = {573--586},
     publisher = {mathdoc},
     volume = {65},
     number = {4},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1999_65_4_a8/}
}
TY  - JOUR
AU  - G. L. Litvinov
AU  - V. P. Maslov
AU  - G. B. Shpiz
TI  - Tensor products of idempotent semimodules. An algebraic approach
JO  - Matematičeskie zametki
PY  - 1999
SP  - 573
EP  - 586
VL  - 65
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1999_65_4_a8/
LA  - ru
ID  - MZM_1999_65_4_a8
ER  - 
%0 Journal Article
%A G. L. Litvinov
%A V. P. Maslov
%A G. B. Shpiz
%T Tensor products of idempotent semimodules. An algebraic approach
%J Matematičeskie zametki
%D 1999
%P 573-586
%V 65
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1999_65_4_a8/
%G ru
%F MZM_1999_65_4_a8
G. L. Litvinov; V. P. Maslov; G. B. Shpiz. Tensor products of idempotent semimodules. An algebraic approach. Matematičeskie zametki, Tome 65 (1999) no. 4, pp. 573-586. http://geodesic.mathdoc.fr/item/MZM_1999_65_4_a8/

[1] Grothendieck A., Produits tensoriels topologiques et espaces nucléairs, Mem. Amer. Math. Soc., 16, Amer. Math. Soc., Providence (R.I.), 1955

[2] Maslov V. P., Asimptoticheskie metody resheniya psevdodifferentsialnykh uravnenii, Nauka, M., 1987

[3] Maslov V. P., “O novom printsipe superpozitsii dlya zadach optimizatsii”, UMN, 42:3 (1987), 39–48 | MR | Zbl

[4] Maslov V. P., Méthodes opératorielles, Mir, Moscow, 1987 | Zbl

[5] Idempotent Analysis, Adv. Soviet Math., 13, eds. Maslov V. P., Samborskiĭ S. N., Amer. Math. Soc., Providence (R.I.), 1992

[6] Maslov V. P., Kolokoltsov V. N., Idempotentnyi analiz i ego primenenie v optimalnom upravlenii, Nauka, M., 1994

[7] Kolokoltsov V. N., Maslov V. P., Idempotent Analysis and Applications, Kluwer Acad. Publ., Dordrecht, 1997 | Zbl

[8] Litvinov G. L., Maslov V. P., Correspondence Principle for Idempotent Calculus and Some Computer Applications, Preprint IHES/M/95/33, Institut des Hautes Etudes Scientifiques, Bures-sur-Yvette, 1995; [9], 420–443

[9] Gunawardena J. (ed.), Idempotency, Publ. of the Newton Institute, Cambridge Univ. Press, Cambridge, 1998

[10] Birkgof G., Teoriya reshetok, Nauka, M., 1984

[11] Litvinov G. L., Maslov V. P., Shpiz G. B., “Lineinye funktsionaly na idempotentnykh prostranstvakh. Algebraicheskii podkhod”, Dokl. RAN (to appear)

[12] Litvinov G. L., Maslov V. P., Shpiz G. B., Idempotentnyi funktsionalnyi analiz. I: Algebraicheskii podkhod, Preprint, Mezhdunarodnyi tsentr “Sofus Li”, M., 1998

[13] Bacelli F. L., Cohen G., Olsder G. J., Quadrat J.-P., Synchronization and Linearity: an Algebra for Discrete Event Systems, Wiley, New York, 1992

[14] Gondran M., Minoux M., Graphes et algorithms, Clarendon Paperbacks, Oxford Univ. Press, Oxford, 1979

[15] Shefer Kh., Topologicheskie vektornye prostranstva, Mir, M., 1971

[16] Gelfand S. I., Manin Yu. I., Metody gomologicheskoi algebry. T. 1. Vvedenie v teoriyu kogomologii i proizvodnye kategorii, Nauka, M., 1988

[17] Dudnikov P. I., Samborskii S. N., “Endomorfizmy polumodulei nad polukoltsami s idempotentnoi operatsiei”, Izv. AN SSSR. Ser. matem., 55:1 (1991), 91–105 ; (1987), ИМ АН УССР, Киев | MR | Zbl

[18] Shubin M. A., Algebraicheskie zamechaniya ob idempotentnykh polukoltsakh i teorema o yadre v prostranstvakh ogranichennykh funktsii, Institut novykh tekhnologii, M., 1990 | Zbl

[19] Joyal A., Tierney M., “An extension of the Galois theory of Grothendieck”, Mem. Amer. Math. Soc., 51, no. 309, 1984 | MR

[20] Banaschewski B., Nelson E., “Tensor products and bimorphisms”, Canad. Math. Bull., 19:4 (1976), 385–402 | MR | Zbl

[21] Pumplün D., “Das Tensorprodukt als universelles Problem”, Math. Ann., 171 (1967), 247–262 | DOI | MR | Zbl